首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transposition reactions take place in the context of higher-order protein-DNA complexes called transpososomes. In the Tn10 transpososome, IHF binding to an "outside end" creates a bend in the DNA that allows the transposase protein to contact the end at two different sites, the terminal and subterminal binding sites. Presumably this helps to stabilize the transposase-end interaction. However, the DNA loop that is formed must be unfolded at a later stage in order for the transposon to integrate into other DNA molecules. It has been proposed that transpososome unfolding also plays a role in transposon excision. To investigate this possibility further, we have isolated and characterized transposase mutants with altered transpososome unfolding properties. Two such mutants were identified, R182A and R184A. Both mutants fail to carry out hairpin formation, an intermediate step in transposon excision, specifically with outside end-containing substrates. These results support the idea that transpososome unfolding and excision are linked. Also, based on the importance of residues R182 and R184 in transpososome unfolding, we propose a new model for the Tn10 transpososome, wherein both DNA ends of the transpososome make subterminal contacts with transposase.  相似文献   

2.
De Aguiar D  Hartl DL 《Genetica》1999,107(1-3):79-85
Two naturally occurring nonautonomous mariner elements were tested in vivo for their ability to down-regulate excision of a target element in the presence of functional mariner transposase. The tested elements were the peach element isolated from Drosophila mauritiana which encodes a transposase that differs from the autonomous element Mos1 in four amino acid replacements, and the DTBZ1 element isolated from D. teissieri which encodes a truncated protein consisting of the first 132 residues at the amino end of the normally 345-residue transposase. We provide evidence that the protein from the peach element does interact to down-regulate wildtype transposase, indicating that at least some nonautonomous elements in natural populations that retain their open reading frame may play a regulatory role. In contrast, our tests reveal at most a weak interaction between transposase from the autonomous Mos1 element and the truncated protein from DTBZ1 and none between Mos1 transposase and that from the distantly related mariner-like element Himar1 identified in the horn fly Haematobia irritans. Hence, the extent of regulatory crosstalk between mariner-like elements may be limited to closely related ones. The evolutionary implications of these results are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
piggyBac can bypass DNA synthesis during cut and paste transposition   总被引:1,自引:0,他引:1  
DNA synthesis is considered a defining feature in the movement of transposable elements. In determining the mechanism of piggyBac transposition, an insect transposon that is being increasingly used for genome manipulation in a variety of systems including mammalian cells, we have found that DNA synthesis can be avoided during piggyBac transposition, both at the donor site following transposon excision and at the insertion site following transposon integration. We demonstrate that piggyBac transposon excision occurs through the formation of transient hairpins on the transposon ends and that piggyBac target joining occurs by the direct attack of the 3'OH transposon ends on to the target DNA. This is the same strategy for target joining used by the members of DDE superfamily of transposases and retroviral integrases. Analysis of mutant piggyBac transposases in vitro and in vivo using a piggyBac transposition system we have established in Saccharomyces cerevisiae suggests that piggyBac transposase is a member of the DDE superfamily of recombinases, an unanticipated result because of the lack of sequence similarity between piggyBac and DDE family of recombinases.  相似文献   

4.
Assembly of the functional tetrameric form of Mu transposase (MuA protein) at the two att ends of Mu depends on interaction of MuA with multiple att and enhancer sites on supercoiled DNA, and is stimulated by MuB protein. The N-terminal domain I of MuA harbours distinct regions for interaction with the att ends and enhancer; the C-terminal domain III contains separate regions essential for tetramer assembly and interaction with MuB protein (IIIα and IIIβ, respectively). Although the central domain II (the ‘DDE’ domain) of MuA harbours the known catalytic DDE residues, a 26 amino acid peptide within IIIα also has a non-specific DNA binding and nuclease activity which has been implicated in catalysis. One model proposes that active sites for Mu transposition are assembled by sharing structural/catalytic residues between domains II and III present on separate MuA monomers within the MuA tetramer. We have used substrates with altered att sites and mixtures of MuA proteins with either wild-type or altered att DNA binding specificities, to create tetrameric arrangements wherein specific MuA subunits are nonfunctional in II, IIIα or IIIβ domains. From the ability of these oriented tetramers to carry out DNA cleavage and strand transfer we conclude that domain IIIα or IIIβ function is not unique to a specific subunit within the tetramer, indicative of a structural rather than a catalytic function for domain III in Mu transposition.  相似文献   

5.
To effectively use transposable elements for the genetic manipulation of plant species lacking well characterized endogenous elements, it is important to evaluate the behavior of known transposable elements following their introduction into heterologous host species. One critical parameter concerns the timing of transposition in relation to the development of the transgenic host since this will affect the frequency with which transposition events are captured in the gametes. In order to examine whether different elements in the same cell are differentially active during development, we used Southern hybridizations to assess the activity of Activator (Ac) elements in progeny plants derived from a tomato transformant carrying five Ac'x at two loci. All of the elements at one locus transposed in the primary transformant at a developmental stage resulting in the transmission of newly transposed elements to the next generation. In contrast, one or more of the Ac's at the second locus were not active at this stage and were transmitted to the next generation at the original donor T-DNA insertion site. These elements were, however, transpositionally active in somatic tissue. These results demonstrated that individual transposable elements in the same transformed cell can be differentially activated during development.  相似文献   

6.
Tn10/IS10 transposition involves assembly of a synaptic complex (or transpososome) in which two transposon ends are paired, followed by four distinct chemical steps at each transposon end. The chemical steps are dependent on the presence of a suitable divalent metal cation (Me(2+)). Transpososome assembly and structure are also affected by Me(2+). To gain further insight into the mechanisms of Me(2+) action in Tn10/IS10 transposition we have investigated the effects of substituting Mn(2+) for Mg(2+), the physiologic Me(2+), in transposition. We have also investigated the significance of an Me(2+)-assisted conformational change in transpososome structure. We show that Mn(2+) has two previously unrecognized effects on the Tn10 donor cleavage reaction. It accelerates the rates of hairpin formation and hairpin resolution without significantly affecting the rate of the first chemical step, first strand nicking. Mn(2+) also relaxes the specificity of first strand nicking. We also show that Me(2+)-assisted transpososome unfolding coincides with a structural transition in the transposon-donor junction that may be necessary for hairpin formation. Possible mechanisms for these observations are considered.  相似文献   

7.
8.
Transposition is one of the primary mechanisms causing genome instability. This phenomenon is mechanistically related to other DNA rearrangements such as V(D)J recombination and retroviral DNA integration. In the Tn5 system, only one protein, the transposase (Tnp), is required for all of the catalytic steps involved in transposon movement. The complexity involved in moving multiple DNA strands within one active site suggests that, in addition to the specific contacts maintained between Tnp and its recognition sequence, Tnp also interacts with the flanking DNA sequence. Here, we demonstrate that Tnp interacts with the donor DNA region. Tnp protects the donor DNA from DNase I digestion, suggesting that Tnp is in contact with, or otherwise distorts, the donor DNA during synapsis. In addition, changes in the donor DNA sequence within this region alter the affinity of Tnp for DNA by eightfold during synapsis. In vitro selection for more stable synaptic complexes reveals an A/T sequence bias for this region. We further show that certain donor DNA sequences, which favor synapsis, also appear to serve as hot spots for strand transfer. The TTATA donor sequence represents the best site. Most surprising is the fact that this sequence is found within the Tnp recognition sequence. Preference for insertion into a site within the Tnp recognition sequence would effectively inactivate one copy of the element and form clusters of the Tn5 transposon. In addition, the fact that several donor DNA sequences, which favor synapsis, appear to serve as hot spots for transposon insertion suggest that similar criteria may exist for Tnp-donor DNA and Tnp-target DNA interactions.  相似文献   

9.
Summary Various segments of Tn3 transposase were fused individually to -galactosidase, and the resulting fusion proteins were examined for their DNA binding ability by a nitrocellulose filter binding assay. Analyses of a series of the fusion proteins revealed that the N-terminal segment of the transposase (amino acid positions 1–242; the transposase gene encodes 1004 residues in all) had specific DNA binding ability for the 38 bp terminal inverted repeat (IR) sequence, and the central segment (amino acid positions 243–632) had non-specific DNA binding ability. Further analyses of each of the two regions revealed that the N-terminal segment could be divided into at least two subsegments (amino acid positions 1–86 and 87–242), neither of which had specific DNA binding ability, but which both possessed nonspecific DNA binding ability. The central segment included two subsegments (amino acid positions 243–289 and 439–505) with non-specific DNA binding ability. These results and other observations suggest that Tn3 transposase has several domains including those responsible for non-specific DNA binding, and a combination of two or more domains gives rise to specific DNA binding activity. The C-terminal segment of the transposase (amino acid positions 633-1004), which is very well conserved among transposases encoded by Tn3 family transposons, had no DNA binding ability. This segment may represent the main part of the catalytic domain responsible for the initiation step of transposition.  相似文献   

10.
The 37,000 bp double-stranded DNA genome of bacteriophage Mu behaves as a plaque-forming transposable element of Escherichia coli. We have defined the cis-acting DNA sequences required in vivo for transposition and packaging of the viral genome by monitoring the transposition and maturation of Mu DNA-containing pSC101 and pBR322 plasmids with an induced helper Mu prophage to provide the trans-acting functions. We found that nucleotides 1 to 54 of the Mu left end define an essential domain for transposition, and that sequences between nucleotides 126 and 203, and between 203 and 1,699, define two auxiliary domains that stimulate transposition in vivo. At the right extremity, the essential sequences for transposition require not more than the first 62 base pairs (bp), although the presence of sequences between 63 and 117 bp from the right end increases the transposition frequency about 15-fold in our system. Finally, we have delineated the pac recognition site for DNA maturation to nucleotides 32 to 54 of the Mu left end which reside inside of the first transposase binding site (L1) located between nucleotides 1–30. Thus, the transposase binding site and packaging domains of bacteriophage Mu DNA can be separated into two well-defined regions which do not appear to overlap.Abbreviations attL attachment site left - attR attachment site right - bp base pairs - Kb kilobase pair - nt nucleotide - Pu Purine - Py pyrimidine - Tn transposable element State University of New York, Downstate Medical Center, Brooklyn, NY 11204 USA  相似文献   

11.
The Sleeping Beauty (SB) transposon is the most widely used DNA transposon in genetic applications and is the only DNA transposon thus far in clinical trials for human gene therapy. In the absence of atomic level structural information, the development of SB transposon relied primarily on the biochemical and genetic homology data. While these studies were successful and have yielded hyperactive transposases, structural information is needed to gain a mechanistic understanding of transposase activity and guides to further improvement. We have initiated a structural study of SB transposase using Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) spectroscopy to investigate the properties of the DNA‐binding domain of SB transposase in solution. We show that at physiologic salt concentrations, the SB DNA‐binding domain remains mostly unstructured but its N‐terminal PAI subdomain forms a compact, three‐helical structure with a helix‐turn‐helix motif at higher concentrations of NaCl. Furthermore, we show that the full‐length SB DNA‐binding domain associates differently with inner and outer binding sites of the transposon DNA. We also show that the PAI subdomain of SB DNA‐binding domain has a dominant role in transposase's attachment to the inverted terminal repeats of the transposon DNA. Overall, our data validate several earlier predictions and provide new insights on how SB transposase recognizes transposon DNA.  相似文献   

12.
The feasibility of using transient transposase expression to mobilize Ds elements for gene tagging in Hieracium aurantiacum was evaluated. A T-DNA construct carrying the Ac transposase gene and either a visible marker gene (uidA) or the conditionally-lethal marker gene (codA) was transferred to H. aurantiacum leaf discs (previously transformed with a Ds element) by co-cultivation with Agrobacterium tumefaciens. Shoots were regenerated directly from the co-cultivated leaf discs under selection for antibiotic resistance resulting from Ds excision. Most regenerants carried unique transposition events. Of 84 regenerated plants, twenty one (25%) did not express the marker gene and the DNA coding sequence of the transposase could not be detected in seven (8.3%). Potential advantages of this method over conventional gene-tagging methods are: rapid recovery of individual transposition events; regenerated plants are isogenic; and the transient nature of transposase expression should facilitate the stabilisation of the transposed element.  相似文献   

13.
Ten types of mariner transposable elements (232 individual sequences) are present in the completed genomic DNA sequence of Caenorhabditis elegans and the partial sequence of Caenorhabditis briggsae. We analyze these replicated instances of mariner evolution and find that elements of a type have evolved within their genomes under no selection on their transposase genes. Seven of the ten reconstructed ancestral mariners carry defective transposase genes. Selection has acted during the divergence of some ancestral elements. The neutrally-evolving mariners are used to analyze the pattern of molecular evolution in Caenorhabditis. There is a significant mutational bias against transversions and significant variation in rates of change across sites. Deletions accumulate at a rate of 0.034 events/bp per substitution/site, with an average size of 166 bp (173 gaps observed). Deletions appear to obliterate preexisting deletions over time, creating larger gaps. Insertions accumulate at a rate of 0.019 events/bp per substitution/site, with an average size of 151 bp (61 events). Although the rate of deletion is lower than most estimates in other species, the large size of deletions causes rapid elimination of neutral DNA: a mariners half-life (the time by which half an elements sequence should have been deleted) is ~0.1 subsitutions/site. This high rate of DNA deletion may explain the compact nature of the nematode genome. When this work was done, both authors were affiliated with the University of Illinois at Urbana-Champaign. Dr. Witherspoon is now working in the private sector, Dr. Robertson remains affiliated with the University of Illinois.  相似文献   

14.
DNA transposons can be employed for stable gene transfer in vertebrates. The Sleeping Beauty (SB) DNA transposon has been recently adapted for human application and is being evaluated in clinical trials, however its molecular mechanism is not clear. SB transposition is catalyzed by the transposase enzyme, which is a multi‐domain protein containing the catalytic and the DNA‐binding domains. The DNA‐binding domain of the SB transposase contains two structurally independent subdomains, PAI and RED. Recently, the structures of the catalytic domain and the PAI subdomain have been determined, however no structural information on the RED subdomain and its interactions with DNA has been available. Here, we used NMR spectroscopy to determine the solution structure of the RED subdomain and characterize its interactions with the transposon DNA.  相似文献   

15.
Lobo NF  Fraser TS  Adams JA  Fraser MJ 《Genetica》2006,128(1-3):347-357
The piggyBac transposon is an extremely versatile helper-dependent vector for gene transfer and germ line transformation in a wide range of invertebrate species. Analyses of genome sequencing databases have identified piggyBac homologues among several sequenced animal genomes, including the human genome. In this report we demonstrate that this insect transposon is capable of transposition in primate cells and embryos of the zebrafish, Danio rerio. piggyBac mobility was demonstrated using an interplasmid transposition assay that has consistently predicted the germ line transformation capabilities of this mobile element in several other species. Both transfected COS-7 primate cells and injected zebrafish embryos supported the helper-dependent movement of tagged piggyBac element between plasmids in the characteristic cut-and-paste, TTAA target-site specific manner. These results validate piggyBac as a valuable tool for genetic analysis of vertebrates.  相似文献   

16.
Bacteriophage Mu DNA, like other transposable elements, requires DNA sequences at both extremities to transpose. It has been previously demonstrated that the transposition activity of various transposons can be influenced by sequences outside their ends. We have found that alterations in the neighboring plasmid sequences near the right extremity of a Mini-Mu, inserted in the plasmid pSC101, can exert an influence on the efficiency of Mini-Mu DNA transposition when an induced helper Mu prophage contains a polar insertion in its semi-essential early region (SEER). The SEER of Mu is known to contain several genes that can affect DNA transposition, and our results suggest that some function(s), located in the SEER of Mu, may be required for optimizing transposition (and thus, replication) of Mu genomes from restrictive locations during the lytic cycle.  相似文献   

17.
18.
Summary The r-determinant (r-det) of the R plasmid NR1-Basel is a 23 kb, IS1-flanked transposon, called Tn2671, which has been shown to transpose to the genome of bacteriophage P7. Among the derivatives of phage P7::r-det we found one which carried two copies of the r-det as inverted repeats and which also contained the P7 genome segment between them in inverted orientation. Its generation is best explained by assuming that the entire 23 kb Tn2671 transposon has undergone intramolecular replicative transposition.  相似文献   

19.
Hsmar1, one of the two subfamilies of mariner transposons in humans, is an ancient element that entered the primate genome lineage approximately 50 million years ago. Although Hsmar1 elements are inactive due to mutational damage, one particular copy of the transposase gene has apparently been under selection. This transposase coding region is part of the SETMAR gene, in which a histone methylatransferase SET domain is fused to an Hsmar1 transposase domain. A phylogenetic approach was taken to reconstruct the ancestral Hsmar1 transposase gene, which we named Hsmar1-Ra. The Hsmar1-Ra transposase efficiently mobilizes Hsmar1 transposons by a cut-and-paste mechanism in human cells and zebra fish embryos. Hsmar1-Ra can also mobilize short inverted-repeat transposable elements (MITEs) related to Hsmar1 (MiHsmar1), thereby establishing a functional relationship between an Hsmar1 transposase source and these MITEs. MiHsmar1 excision is 2 orders of magnitude more efficient than that of long elements, thus providing an explanation for their high copy numbers. We show that the SETMAR protein binds and introduces single-strand nicks into Hsmar1 inverted-repeat sequences in vitro. Pathway choices for DNA break repair were found to be characteristically different in response to transposon cleavage mediated by Hsmar1-Ra and SETMAR in vivo. Whereas nonhomologous end joining plays a dominant role in repairing excision sites generated by the Hsmar1-Ra transposase, DNA repair following cleavage by SETMAR predominantly follows a homology-dependent pathway. The novel transposon system can be a useful tool for genome manipulations in vertebrates and for investigations into the transpositional dynamics and the contributions of these elements to primate genome evolution.  相似文献   

20.
This review compares the activity of the plant transposable elements Ac, Tam3, En/Spm and Mu in heterologous plant species and in their original host. Mutational analysis of the autonomous transposable elements and two-element systems have supplied data that revealed some fundamental properties of the transposition mechanism. Functional parts of Ac and En/Spm were detected by in vitro binding studies of purified transposase protein and have been tested for their importance in the function of these transposable elements in heterologous plant species. Experiments that have been carried out to regulate the activity of the Ac transposable element are in progress and preliminary results have been compiled. Perspectives for manipulated transposable elements in transposon tagging strategies within heterologous plant species are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号