首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leader peptidase of Escherichia coli cleaves a 23-residue leader sequence from M13 procoat to yield mature coat protein in virus-infected cells. We have reconstituted pure leader peptidase into vesicles of E. coli lipids and found that these liposomes are active in the conversion of procoat to coat. Trypsin removes all but 10% of the leader peptidase, yet the vesicles retain nearly full capacity to convert procoat to coat, suggesting that only procoat which inserts across the liposomal membrane is a substrate for leader peptidase. This is confirmed by the finding that over 70% of the coat protein produced by these liposomes spans the membrane. The rate at which leader peptidase inside protease-treated liposomes cleaves externally added procoat is comparable to the rate of procoat cleavage by the same amount of leader peptidase in detergent micelles. Thus, procoat can rapidly integrate across a liposomal membrane and be cleaved to coat protein. These findings confirm the central part of the membrane trigger hypothesis that certain proteins (such as procoat) can cross a bilayer without the aid of a proteinaceous pore or transport system.  相似文献   

2.
OmpA is a major protein of the outer membrane of Escherichia coli. It is made as a larger precursor, pro-OmpA, which requires a membrane potential for processing. We now show that pro-OmpA accumulates in the cytoplasm of cells treated with carbonyl cyanide m-chlorophenylhydrazone, an uncouple which lowers the membrane potential. Upon restoration of the potential, this pro-OmpA is secreted, processed, and assembled into the outer membrane. Pro-OmpA made in vitro is also recovered with the postribosomal supernatant. It is efficiently processed to OmpA by liposomes which have bacterial leader peptidase that is exclusively internally oriented. These experiments show that: (i) the insertion of pro-OmpA into the plasma membrane is not coupled to its synthesis; (ii) insertion is promoted by the transmembrane electrochemical potential; (iii) pro-OmpA can cross a bilayer spontaneously; and (iv) pro-OmpA is processed by the same leader peptidase which converts M13 procoat to coat.  相似文献   

3.
Many secreted and membrane proteins have amino-terminal leader peptides which are essential for their insertion across the membrane bilayer. These precursor proteins, whether from prokaryotic or eukaryotic sources, can be processed to their mature forms in vitro by bacterial leader peptidase. While different leader peptides have shared features, they do not share a unique sequence at the cleavage site. To examine the requirements for substrate recognition by leader peptidase, we have truncated M13 procoat, a membrane protein precursor, from both the amino- and carboxy-terminal ends with specific proteases or chemical cleavage agents. The fragments isolated from these reactions were assayed as substrates for leader peptidase. A 16 amino acid residue peptide which spans the leader peptidase cleavage site is accurately cleaved. Neither the basic amino-terminal region nor most of the hydrophobic central region of the leader peptide are essential for accurate cleavage.  相似文献   

4.
M13 procoat inserts into liposomes in the absence of other membrane proteins   总被引:11,自引:0,他引:11  
Procoat, the precursor form of the major coat protein of coliphage M13, assembles into the Escherichia coli inner membrane and is cleaved to mature coat protein by leader peptidase. This assembly process has previously been reconstituted using lipids and purified leader peptidase in a cell-free protein synthesis reaction (Watts, C., Silver, P., and Wickner, W. (1981) Cell 25, 347-353; Ohno-Iwashita, Y., and Wickner, W. (1983) J. Biol. Chem. 258, 1895-1900). We now report that procoat can also cross a liposomal membrane composed of only purified phospholipids; leader peptidase is not needed to catalyze insertion. When procoat is synthesized in vitro in the presence of liposomes with encapsulated chymotrypsin, the procoat inserts spontaneously through the membrane and is degraded. The protease was shown by several criteria to be in the lumen of the liposomes. These results demonstrate that the precursor form of an E. coli integral membrane protein can cross a membrane without the aid of leader peptidase or any other membrane proteins.  相似文献   

5.
Gene 8 of bacteriophage M13 codes for procoat, the precursor of its major coat protein. Gene 8 has been cloned into a plasmid and mutagenized. We have isolated mutants of this gene in which procoat is synthesized but is not processed to coat protein. We now describe mutants in the leader region of procoat, at positions -6, -3, and -1 with respect to the leader peptidase cleavage site. These positions are quite conserved among the leader peptides of various pre-proteins. Each of these mutant procoats is synthesized at a normal rate and inserts correctly into the plasma membrane, as judged by its accessibility to protease in intact spheroplasts. Procoat accumulates, largely in its transmembrane form, and is not cleaved to coat. In detergent extracts, the mutant procoats are very poor substrates for added leader peptidase. We conclude that these 3 residues are not conserved for insertion across the membrane but are part of an essential recognition site for the leader peptidase.  相似文献   

6.
Bacterial signal peptides display little amino acid sequence homology despite their shared role in mediating protein transport. This heterogeneity may exist to permit the establishment of signal peptide conformations that are appropriate for transport of particular proteins. In this paper we explore how signal peptides are composed of structural units that may interact with each other and with the mature protein to effect transport. Using a new application of cassette mutagenesis, we have replaced the hydrophobic core of the Escherichia coli alkaline phosphatase signal peptide with cores from the signals of maltose-binding protein, OmpA, and M13 major coat protein. The core regions from maltose-binding protein and OmpA effectively replaced the alkaline phosphatase core; the resultant hybrid signals performed as well as wild type in periplasmic transport and processing of alkaline phosphatase. However, the core region from M13 major coat protein generated a transport-incompetent hybrid signal peptide. Elimination of a proline-containing portion of the M13 major coat protein core did not improve transport effectiveness. However, restoration of the procoat cleavage region and the negatively charged amino terminus of the mature protein did ameliorate the transport defect. These results suggest that at least in the case of these procoat-derived signal peptide mutants, there is a requirement for complementarity among the hydrophobic core, cleavage region, and part of the mature protein in order for efficient protein transport to occur.  相似文献   

7.
Leader peptidase of Escherichia coli spans the plasma membrane twice with its amino terminus on the periplasmic surface of the membrane and its large carboxyl-terminal domain protruding into the periplasm. To monitor the transfer of the amino terminus of leader peptidase to the periplasm, we have constructed a fusion protein between the 18-residue amino-terminal periplasmic domain of Pf3 bacteriophage coat protein and the beginning of leader peptidase. We find that neither the SecA or SecY proteins nor a transmembrane electrochemical potential is required for insertion of the amino terminus, while the transfer of the carboxyl-terminal domain of leader peptidase has these requirements. The first 35 residues of leader peptidase, which include the first hydrophobic domain and the carboxyl-terminal positively charged cluster, are sufficient to insert the amino terminus. When positively charged residues are introduced before the first transmembrane segment, translocation of the amino terminus is abolished. These studies in protein membrane topogenesis, showing that there are different requirements for amino and carboxyl termini insertion, indicate that multiple mechanisms exist even within the same protein.  相似文献   

8.
Leader peptidase of Escherichia coli, a protein of 323 residues, has three hydrophobic domains. The first, residues 1-22, is the most apolar and is followed by a polar region (23-61) which faces the cytoplasm. The second hydrophobic domain (residues 62-76) spans the membrane. The third hydrophobic domain, which has a minimal apolar character, and the polar, carboxyl-terminal two-thirds of the protein are exposed to the periplasm. Deletion of either the amino terminus (residues 4-50) or the third hydrophobic region (residues 83-98) has almost no effect on the rate of leader peptidase membrane assembly, while the second hydrophobic domain is essential for insertion (Dalbey, R., and Wickner, W. (1987) Science 235, 783-787). To further define the roles of these domains, we have replaced the normal, cleaved leader sequence of pro-OmpA and M13 procoat with regions containing either the first or second apolar domain of leader peptidase. The second apolar domain supports the translocation of OmpA or coat protein across the plasma membrane, establishing its identity as an internal, uncleaved signal sequence. In addition to this sequence, we now find that leader peptidase needs either the amino-terminal domain or the third hydrophobic domain to permit its rapid membrane assembly. These results show that, although a signal sequence is necessary for rapid membrane assembly of leader peptidase, it is not sufficient.  相似文献   

9.
Conditional lethal YidC mutants have been isolated to decipher the role of YidC in the assembly of Sec-dependent and Sec-independent membrane proteins. We now show that the membrane insertion of the Sec-independent M13 procoat-lep protein is inhibited in a short time in a temperature-sensitive mutant when shifted to the nonpermissive temperature. This provides an additional line of evidence that YidC plays a direct role in the insertion of the Sec-independent M13 procoat protein. However, in the temperature-sensitive mutant, the insertion of the Sec-independent Pf3 phage coat protein and the Sec-dependent leader peptidase were not strongly inhibited at the restricted temperatures. Conversely, using a cold-sensitive YidC strain, we find that the membrane insertion of the Sec-independent Pf3 coat protein is blocked, and the Sec-dependent leader peptidase is inhibited at the nonpermissive temperature, whereas the insertion of the M13 procoat protein is nearly normal. These data show that the YidC function for procoat and its function for Pf3 coat and possibly leader peptidase are genetically separable and suggest that the YidC structural requirements are different for the Sec-independent M13 procoat and Pf3 coat phage proteins that insert by different mechanisms.  相似文献   

10.
We have examined the effects of thermosensitive mutations in secA and secY (prlA) genes on the export of proteins to the three layers of the Escherichia coli cell surface. After several hours at the nonpermissive temperature, the export of two major outer membrane proteins, lipoprotein and OmpA, is delayed, then essentially blocked, in either a secA or secY strain. These mutations also have a strong effect on the export of several proteins, such as maltose binding protein, to the periplasm, though the export of many periplasmic proteins is not affected. secA and secY block the assembly of leader peptidase, which is made without a leader sequence, into the inner membrane. However, the membrane assembly of M13 coat protein (an inner membrane protein made with an amino-terminal leader sequence) is not affected. Thus, the requirement for sec function for export does not correlate with the presence or absence of leader peptide or with a particular subcellular compartment, but rather is specific to each particular protein.  相似文献   

11.
L M Shen  J I Lee  S Y Cheng  H Jutte  A Kuhn  R E Dalbey 《Biochemistry》1991,30(51):11775-11781
Leader peptidase cleaves the leader sequence from the amino terminus of newly made membrane and secreted proteins after they have translocated across the membrane. Analysis of a large number of leader sequences has shown that there is a characteristic pattern of small apolar residues at -1 and -3 (with respect to the cleavage site) and a helix-breaking residue adjacent to the central apolar core in the region -4 to -6. The conserved sequence pattern of small amino acids at -1 and -3 around the cleavage site most likely represents the substrate specificity of leader peptidase. We have tested this by generating 60 different mutations in the +1 to -6 domain of the M13 procoat protein. These mutants were analyzed for in vivo and in vitro processing, as well as for protein insertion into the cytoplasmic membrane. We find that in vivo leader peptidase was able to process procoat with an alanine, a serine, a glycine, or a proline residue at -1 and with a serine, a glycine, a threonine, a valine, or a leucine residue at -3. All other alterations at these sites were not processed, in accordance with predictions based on the conserved features of leader peptides. Except for proline and threonine at +1, all other residues at this position were processed by leader peptidase. None of the mutations at -2, -4, or -5 of procoat (apart from proline at -4) completely abolished leader peptidase cleavage in vivo although there were large effects on the kinetics of processing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The residues occupying the -3 and -1 positions relative to the cleavage site of secretory precursor proteins are usually amino acids with small, neutral side chains that are thought to constitute the recognition site for the processing enzyme, signal peptidase. No restrictions have been established for residues positioned +1 to the cleavage site, although there have been several indications that mutant precursor proteins with a proline at +1 cannot be processed by Escherichia coli signal peptidase I (also called leader peptidase). A maltose-binding protein (MBP) species with proline at +1, designated MBP27-P, was translocated efficiently but not processed when expressed in E. coli cells. Unexpectedly, induced expression of MBP27-P was found to have an adverse effect on the processing kinetics of five different nonlipoprotein precursors analyzed, but not precursor Lpp (the major outer membrane lipoprotein) processed by a different enzyme, signal peptidase II. Cell growth also was inhibited following induction of MBP27-P synthesis. Substitutions in the MBP27-P signal peptide that blocked MBP translocation across the cytoplasmic membrane and, hence, access to the processing enzyme or that altered the signal peptidase I recognition site at position -1 restored both normal growth and processing of other precursors. Since overproduction of signal peptidase I also restored normal growth and processing to cells expressing unaltered MBP27-P, it was concluded that precursor MBP27-P interferes with the activity of the processing enzyme, probably by competing as a noncleavable substrate for the enzyme's active site. Thus, although signal peptidase I, like many other proteases, is unable to cleave an X-Pro bond, a proline at +1 does not prevent the enzyme from recognizing the normal processing site. When the RBP signal peptide was substituted for the MBP signal peptide of MBP27-P, the resultant hybrid protein was processed somewhat inefficiently at an alternate cleavage site and elicited a much reduced effect on cell growth and signal peptidase I activity. Although the MBP signal peptide also has an alternate cleavage site, the different properties of the RBP and MBP signal peptides with regard to the substitution of proline at +1 may be related to their respective secondary structures in the processing site region.  相似文献   

13.
The M13 phage assembles in the inner membrane of Escherichia coli. During maturation, about 2,700 copies of the major coat protein move from the membrane onto a single-stranded phage DNA molecule that extrudes out of the cell. The major coat protein is synthesized as a precursor, termed procoat protein, and inserts into the membrane via a Sec-independent pathway. It is processed by a leader peptidase from its leader (signal) peptide before it is assembled onto the phage DNA. The transmembrane regions of the procoat protein play an important role in all these processes. Using cysteine mutants with mutations in the transmembrane regions of the procoat and coat proteins, we investigated which of the residues are involved in multimer formation, interaction with the leader peptidase, and formation of M13 progeny particles. We found that most single cysteine residues do not interfere with the membrane insertion, processing, and assembly of the phage. Treatment of the cells with copper phenanthroline showed that the cysteine residues were readily engaged in dimer and multimer formation. This suggests that the coat proteins assemble into multimers before they proceed onto the nascent phage particles. In addition, we found that when a cysteine is located in the leader peptide at the -6 position, processing of the mutant procoat protein and of other exported proteins is affected. This inhibition of the leader peptidase results in death of the cell and shows that there are distinct amino acid residues in the M13 procoat protein involved at specific steps of the phage assembly process.  相似文献   

14.
Phospholipids are essential building blocks of membranes and maintain the membrane permeability barrier of cells and organelles. They provide not only the bilayer matrix in which the functional membrane proteins reside, but they also can play direct roles in many essential cellular processes. In this review, we give an overview of the lipid involvement in protein translocation across and insertion into the Escherichia coli inner membrane. We describe the key and general roles that lipids play in these processes in conjunction with the protein components involved. We focus on the Sec-mediated insertion of leader peptidase. We describe as well the more direct roles that lipids play in insertion of the small coat proteins Pf3 and M13. Finally, we focus on the role of lipids in membrane assembly of oligomeric membrane proteins, using the potassium channel KcsA as model protein. In all cases, the anionic lipids and lipids with small headgroups play important roles in either determining the efficiency of the insertion and assembly process or contributing to the directionality of the insertion process.  相似文献   

15.
G Della Valle  R G Fenton  C Basilico 《Cell》1981,23(2):347-355
The major coat protein of coliphage M13 is an integral protein of the E. coli plasma membrane prior to its assembly into new virus particles. It is generated from its precursor, procoat, by a membrane-bound leader peptidase. We now describe the reconstitution of a highly purified preparation of this enzyme into vesicles of E. coli phospholipids. These vesicles bind procoat made in vitro and procoat isolated from in vitro synthesis. Both the crude and the purified substrates were converted posttranslationally to coat protein. A significant proportion of the coat protein becomes inserted into the vesicle bilayer, with the N terminus facing the vesicle interior and the C terminus exposed to the external medium. These results strongly suggest that highly purified leader peptidase from E. coli and phospholipids are the only components necessary to mediate the binding, processing and insertion of this integral membrane protein.  相似文献   

16.
Leader peptidase of Escherichia coli cleaves the leader sequence from the amino terminus of membrane and secreted proteins after these proteins insert across the membrane. Despite considerable research, the mechanism of catalysis of leader peptidase remains unknown. This peptidase cannot be classified using protease inhibitors to the serine, cysteine, aspartic acid, or metallo- classes of proteases (Zwizinski, C., Date, T., and Wickner, W. (1981) J. Biol. Chem. 256, 3593-3597). Using site-directed mutagenesis, we have attempted to place leader peptidase in one of these groups. We found that leader peptidase, lacking all of the cysteine residues, can cleave the leader peptide from procoat, the precursor to bacteriophage M13 coat protein. Replacement of each histidine residue with an alanyl residue was without effect on catalysis. Among all the serine and aspartic acid residues, serine 90 and serine 185 as well as aspartic acid 99, 153, 273, and 276 are necessary to cleave procoat in a detergent extract. However, only serine 90 and aspartic acid 153 were required for processing using a highly sensitive in vivo assay. In addition to the residues directly affecting catalysis, aspartic acid 99 plays a role in maintaining the structure of leader peptidase. Replacement of this residue with alanine results in a very unstable leader peptidase protein. This study thus defines two critical residues, serine 90 and aspartic acid 153, that may be directly involved in catalysis and provides evidence that leader peptidase belongs to a novel class of serine proteases.  相似文献   

17.
The lep gene of Escherichia coli encodes the leader peptidase which cleaves amino-terminal leader sequences of secreted proteins. To facilitate the study of structure-function relationships of the leader peptidase, 22 amber mutations in lep were isolated by localized mutagenesis. These amber mutants grew at 32 degrees C but not at 42 degrees C in the presence of a temperature-sensitive amber suppressor. Most of them were lethal under sup0 conditions. However, one amber mutant, the lep-9 mutant, exhibited temperature-sensitive growth in the sup0 strain, indicating that the amber fragment is active at 32 degrees C but not at 42 degrees C. Protein precursors of the maltose-binding protein and OmpA accumulate strikingly in the lep-9 mutant.  相似文献   

18.
K C Parker  D C Wiley 《Gene》1989,83(1):117-124
beta 2-Microglobulin (beta 2M), the small subunit of human leukocyte antigen (HLA) class-I proteins, has been synthesized in Escherichia coli and purified in mg amounts. A beta 2m cDNA clone was fused in-frame behind DNA encoding the signal sequence for the outer membrane protein, OmpA. Three different constructions were made, whose products differed by the insertion of either an extra Ala residue, the hexapeptide AEFLEA [single-letter amino acid (aa) code], or no aa between the OmpA signal sequence and beta 2M-coding sequence. All three protein products were correctly processed by bacterial signal peptidase, as determined by N-terminal sequencing, and all three were secreted as soluble proteins into the periplasmic space. However, the signal sequence of the preprotein with the inserted hexapeptide, AEFLEA, was cleaved to a much greater degree than the other two preproteins. When there was no insertion, the mature protein was identical to human beta 2M, as analyzed by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis, circular dichroism, and native isoelectric focusing. This 'bacterial beta 2M', radiolabeled with Bolton-Hunter reagent, was able to exchange into papain-solubilized HLA-B7, as determined by Sephadex G-75 chromatography and immune precipitation, indicating that bacterial beta 2M could complex with the heavy chain of HLA-B7.  相似文献   

19.
Proteins which are transported across the bacterial plasma membrane, endoplasmic reticulum and thylakoid membrane are usually synthesized as larger precursors containing amino-terminal targeting signals. Removal of the signals is carried out by specific, membrane-bound processing peptidases. In this report we show that the reaction specificities of these three peptidases are essentially identical. Precursors of two higher plant thylakoid lumen proteins are efficiently processed by purified Escherichia coli leader peptidase. Processing of one precursor, that of the 23 kd photosystem II protein, by both the thylakoidal and E. coli enzymes generates the correct mature amino terminus. Similarly, leader (signal) peptides of both eukaryotic and prokaryotic origin are cleaved by partially purified thylakoidal processing peptidase. No evidence of incorrect processing was obtained. Both leader peptidase and thylakoidal peptidase are inhibited by a synthetic leader peptide.  相似文献   

20.
Biological membranes contain a substantial amount of "nonbilayer lipids", which have a tendency to form nonlamellar phases. In this study the hypothesis was tested that the presence of nonbilayer lipids in a membrane, due to their overall small headgroup, results in a lower packing density in the headgroup region, which might facilitate the interfacial insertion of proteins. Using the catalytic domain of leader peptidase (delta2-75) from Escherichia coli as a model protein, we studied the lipid class dependence of its insertion and binding. In both lipid monolayers and vesicles, the membrane binding of (catalytically active) delta2-75 was much higher for the nonbilayer lipid DOPE compared to the bilayer lipid DOPC. For the nonbilayer lipids DOG and MGDG a similar effect was observed as for DOPE, strongly suggesting that no specific interactions are involved but that the small headgroups create hydrophobic interfacial insertion sites. On the basis of the results of the monolayer experiments, calculations were performed to estimate the space between the lipid headgroups accessible to the protein. We estimate a maximal size of the insertion sites of 15 +/- 7 A2/lipid molecule for DOPE, relative to DOPC. The size of the insertion sites decreases with an increase in headgroup size. These results show that nonbilayer lipids stimulate the membrane insertion of delta2-75 and support the idea that such lipids create insertion sites by reducing the packing density at the membrane-water interface. It is suggested that PE in the bacterial membrane facilitates membrane insertion of the catalytic domain of leader peptidase, allowing the protein to reach the cleavage site in preproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号