首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Normovolemic polycythemia did not improve the ability of either resting muscle or gut to maintain O2 uptake (VO2) during severe hypoxia because of the adverse effects of increased viscosity on blood flow to those regions. The present study tested whether increased metabolic demand would promote vasodilation sufficiently to overcome those effects. We measured whole body, muscle, and gut blood flow, O2 extraction, and VO2 in anesthetized dogs after increasing hematocrit to 65% and raising O2 demand with 2,4-dinitrophenol (n = 8). We also tested whether regional denervation (n = 8) and hypervolemia (n = 6) affected these responses. After raising hematocrit and metabolism, the dogs were ventilated with air, with 9% O2-91% N2, and again with air for 30-min periods. Reduced blood flow and increased O2 demand, caused by increased blood viscosity and 2,4-dinitrophenol, respectively, increased O2 extraction so that muscle VO2 was nearly supply limited in normoxia. Denervation showed that vasoconstriction had increased in gut and muscle with hypoxia onset but this was overcome after 15 min. By then, muscle was receiving a major portion of cardiac output, whereas gut showed little change. With hypervolemia cardiac output increased in hypoxia but neither gut nor muscle increased blood flow in those experiments. Because regional and whole body VO2 fell in all groups during hypoxia to the same extent found earlier in normocythemic dogs, any real benefit of polycythemia under the conditions of these experiments was dubious at best.  相似文献   

2.
The importance of aortic chemoreceptors in the circulatory responses to severe carbon monoxide (CO) hypoxia was studied in anesthetized dogs. The aortic chemoreceptors were surgically denervated in eight dogs prior to the induction of CO hypoxia, with nine other dogs serving as intact controls. Values for both whole body and hindlimb blood flow, vascular resistance, and O2 uptake were determined prior to and at 30 min of CO hypoxia in the two groups. Arterial O2 content was reduced 65% using an in situ dialysis method to produce CO hypoxia. At 30 min of hypoxia, cardiac output increased but limb blood flow remained at prehypoxic levels in both groups. This indicated that aortic chemoreceptor input was not necessary for the increase in cardiac output during severe CO hypoxia, nor for the diversion of this increased flow to nonmuscle tissues. Limb O2 uptake decreased during CO hypoxia in the aortic-denervated group but remained at prehypoxic levels in the intact group. The lower resting values for limb blood flow in the aortic-denervated animals required a greater level of O2 extraction to maintain resting O2 uptake. When CO hypoxia was superimposed upon this compensation, an O2 supply limitation occurred because the limb failed to vasodilate even as maximal levels for O2 extraction were approached.  相似文献   

3.
Systemic and intestinal limits of O2 extraction in the dog   总被引:3,自引:0,他引:3  
When systemic delivery of O2 (QO2 = QT X CaO2, where QT is cardiac output and CaO2 is arterial O2 content) is reduced by bleeding, the systemic O2 extraction ratio [ER = (CaO2 - CVO2)/CaO2, where CVO2 is venous O2 content] increases until a critical limit is reached below which O2 uptake (VO2) becomes limited by O2 delivery. During hypovolemia, reflex increases in mesenteric arterial tone may preferentially reduce gut blood flow so that the onset of O2 supply dependence occurs in the gut before other regions. We compared the critical O2 delivery (QO2c) and critical extraction ratio (ERc) of whole body and an isolated segment (30-50 g) of small bowel in seven anesthetized paralyzed dogs ventilated with room air. Systemic QO2 was reduced in stages by controlled hemorrhage as arterial O2 content was maintained, and systemic and gut VO2 and QO2 were measured at each stage. Body QO2c was 7.9 +/- 1.9 ml X kg-1 X min-1 (ERc = 0.69 +/- 0.12), whereas gut O2 supply dependency occurred when gut QO2 was 34.3 +/- 11.3 ml X min-1 X kg gut wt-1 (ERc = 0.63 +/- 0.09). O2 supply dependency in the gut occurred at a higher systemic QO2 (9.7 +/- 2.7) than whole-body QO2c (P less than 0.05). The extraction ratio at the final stage (maximal ER) was less in the gut (0.80 +/- 0.05) than whole body (0.87 +/- 0.06). Thus during reductions in systemic QO2, gut VO2 was maintained by increases in gut extraction of O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Normally, tissue O2 uptake (VO2) is set by metabolic activity rather than O2 delivery (QO2 = blood flow X arterial O2 content). However, when QO2 is reduced below a critical level, VO2 becomes limited by O2 supply. Experiments have shown that a similar critical QO2 exists, regardless of whether O2 supply is reduced by progressive anemia, hypoxemia, or reduction in blood flow. This appears inconsistent with the hypothesis that O2 supply limitation must occur by diffusion limitation, since very different mixed venous PO2 values have been seen at the critical point with hypoxic vs. anemic hypoxia. The present study sought to begin clarifying this paradox by studying the theoretical relationship between tissue O2 supply and uptake in the Krogh tissue cylinder model. Steady-state O2 uptake was computed as O2 delivery to tissue representative of whole body was gradually lowered by anemic, hypoxic, or stagnant hypoxia. As diffusion began to limit uptake, the fall in VO2 was computed numerically, yielding a relationship between QO2 and VO2 in both supply-independent and O2 supply-dependent regions. This analysis predicted a similar biphasic relationship between QO2 and VO2 and a linear fall in VO2 at O2 deliveries below a critical point for all three forms of hypoxia, as long as intercapillary distances were less than or equal to 80 microns. However, the analysis also predicted that O2 extraction at the critical point should exceed 90%, whereas real tissues typically extract only 65-75% at that point. When intercapillary distances were larger than approximately 80 microns, critical O2 extraction ratios in the range of 65-75% could be predicted, but the critical point became highly sensitive to the type of hypoxia imposed, contrary to experimental findings. Predicted gas exchange in accord with real data could only be simulated when a postulated 30% functional peripheral O2 shunt (arterial admixture) was combined with a tissue composed of Krogh cylinders with intercapillary distances of less than or equal to 80 microns. The unrealistic efficacy of tissue O2 extraction predicted by the Krogh model (in the absence of postulated shunt) may be a consequence of the assumed homogeneity of tissues, because real tissues exhibit many forms of heterogeneity among capillary units. Alternatively, the failure of the original Krogh model to fully predict tissue O2 supply dependency may arise from basic limitations in the assumptions of that model.  相似文献   

5.
We examined the relationship between changes in cardiorespiratory and cerebrovascular function in 14 healthy volunteers with and without hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 80%] at rest and during 60-70% maximal oxygen uptake steady-state cycling exercise. During all procedures, ventilation, end-tidal gases, heart rate (HR), arterial blood pressure (BP; Finometer) cardiac output (Modelflow), muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAV; transcranial Doppler ultrasound) were measured continuously. The effect of hypoxia on dynamic cerebral autoregulation was assessed with transfer function gain and phase shift in mean BP and MCAV. At rest, hypoxia resulted in increases in ventilation, progressive hypocapnia, and general sympathoexcitation (i.e., elevated HR and cardiac output); these responses were more marked during hypoxic exercise (P < 0.05 vs. rest) and were also reflected in elevation of the slopes of the linear regressions of ventilation, HR, and cardiac output with Sa(O(2)) (P < 0.05 vs. rest). MCAV was maintained during hypoxic exercise, despite marked hypocapnia (44.1 +/- 2.9 to 36.3 +/- 4.2 Torr; P < 0.05). Conversely, hypoxia both at rest and during exercise decreased cerebral oxygenation compared with muscle. The low-frequency phase between MCAV and mean BP was lowered during hypoxic exercise, indicating impairment in cerebral autoregulation. These data indicate that increases in cerebral neurogenic activity and/or sympathoexcitation during hypoxic exercise can potentially outbalance the hypocapnia-induced lowering of MCAV. Despite maintaining MCAV, such hypoxic exercise can potentially compromise cerebral autoregulation and oxygenation.  相似文献   

6.
We have examined the relative deficits in tension development and O2 uptake in contracting skeletal muscle during severe hypoxic hypoxia. Anesthetized mongrel dogs were ventilated to maintain an end-tidal PCO2 between 35 and 40 Torr. Venous outflow from the gastrocnemius muscle was measured using an electromagnetic flow probe. The tendon was cut and attached to a strain gauge. The muscle was stimulated to contract isometrically at 2 or 4 Hz for 20 min. Hypoxia (9% O2 in N2) was then imposed for 30 min, followed by 30 min of normoxia. Blood flow first increased in proportion to the contraction frequency and then increased further a similar amount in both groups during hypoxia. O2 extraction and blood flow reached maximal levels during hypoxia in the 2-Hz group. The further O2 deficit that was accumulated during 4 Hz and hypoxia was, therefore, a result of the greater discrepancy between O2 supply and demand. O2 uptake decreased more in hypoxia than did developed tension. These results are best explained by ATP supplementation from nonaerobic energy sources that was promoted by the free-flow condition of hypoxic hypoxia.  相似文献   

7.
We previously showed that after seven generations of artificial selection of rats for running capacity, maximal O2 uptake (VO2max) was 12% greater in high-capacity (HCR) than in low-capacity runners (LCR). This difference was due exclusively to a greater O2 uptake and utilization by skeletal muscle of HCR, without differences between lines in convective O2 delivery to muscle by the cardiopulmonary system (QO2max). The present study in generation 15 (G15) female rats tested the hypothesis that continuing improvement in skeletal muscle O2 transfer must be accompanied by augmentation in QO2max to support VO2max of HCR. Systemic O2 transport was studied during maximal normoxic and hypoxic exercise (inspired PO2 approximately 70 Torr). VO2max divergence between lines increased because of both improvement in HCR and deterioration in LCR: normoxic VO2max was 50% higher in HCR than LCR. The greater VO2max in HCR was accompanied by a 41% increase in QO2max: 96.1 +/- 4.0 in HCR vs. 68.1 +/- 2.5 ml stpd O2 x min(-1) x kg(-1) in LCR (P < 0.01) during normoxia. The greater G15 QO2max of HCR was due to a 48% greater stroke volume than LCR. Although tissue O2 diffusive conductance continued to increase in HCR, tissue O2 extraction was not significantly different from LCR at G15, because of the offsetting effect of greater HCR blood flow on tissue O2 extraction. These results indicate that continuing divergence in VO2max between lines occurs largely as a consequence of changes in the capacity to deliver O2 to the exercising muscle.  相似文献   

8.
The consequences of a decreased O2 supply to a contracting canine gastrocnemius muscle preparation were investigated during two forms of hypoxia: hypoxic hypoxia (HH) (n = 6) and CO hypoxia (COH) (n = 6). Muscle O2 uptake, blood flow, O2 extraction, and developed tension were measured at rest and at 1 twitch/s isometric contractions in normoxia and in hypoxia. No differences were observed between the two groups at rest. During contractions and hypoxia, however, O2 uptake decreased from the normoxic level in the COH group but not in the HH group. Blood flow increased in both groups during hypoxia, but more so in the COH group. O2 extraction increased further with hypoxia (P less than 0.05) during concentrations in the HH group but actually fell (P less than 0.05) in the COH group. The O2 uptake limitation during COH and contractions was associated with a lesser O2 extraction. The leftward shift in the oxyhemoglobin dissociation curve during COH may have impeded tissue O2 extraction. Other factors, however, such as decreased myoglobin function or perfusion heterogeneity must have contributed to the inability to utilize the O2 reserve more fully.  相似文献   

9.
We wished to see whether aortic chemoreceptors and other vagal afferent traffic played an essential role in the circulatory adjustments to hypoxic hypoxia. Aortic chemoreceptors were denervated (AD) in one group (n = 6) of anesthetized dogs, bilateral cervical vagotomy (V) was done on a second group (n = 6), and a third group (n = 6) was sham-operated to serve as a control. Venous outflow from the left hindlimb was isolated. After a 20-min control period of ventilation with room air, the animals were ventilated for 60 min with 9% of O2 in N2. Arterial, mixed venous, and hindlimb venous blood samples were taken every 20 min. The cardiac output response to hypoxic hypoxia was attenuated at 40 and 60 min in both the AD and V groups (p less than 0.05). Hindlimb blood flow increased equally in all three groups during hypoxia. The pressor response at the onset of hypoxia (20 min) was abolished in the AD and V groups, but mean arterial pressure fell to similar levels in all three groups by 60 min of hypoxia. We concluded that reflex aortic chemoreceptor stimulation during hypoxia augmented cardiac output mostly by effects on the venous side of the circulation but played no role in skeletal muscle vascular responses to hypoxic hypoxia.  相似文献   

10.
We studied whether exercise endurance under normobaric hypoxia can be enhanced by increasing hypoxic ventilatory sensitivity with almitrine bismesylate (ALM). On both ALM and placebo (PL) days, resting subjects breathed a hypoxic gas mixture (an inspired O2 fraction of 10.4-13.2%), which lowered resting arterial O2 saturation (SaO2) to 80%. After 15 min of rest there was a 3-min warm-up period of exercise at 50 W (light) on a cycle ergometer, followed by a step increase in load to 60% of the previously determined maximum power output with room-air breathing (moderate), which was maintained until exhaustion. With PL, SaO2 decreased rapidly with the onset of exercise and continued to fall slowly during moderate exercise, averaging 71.0 +/- 1.8% (SE) at exhaustion. With ALM, saturation did not differ from PL during air breathing but significantly exceeded SaO2 with PL, by 3.4% during resting hypoxia, by 4.0% at the start of exercise, and by 5.9% at exhaustion. Ventilation was not affected by ALM during air breathing and was slightly, although not significantly, increased during hypoxic rest and exercise. ALM was associated with an increased heart rate during room air breathing but not during hypoxia. Endurance time was 20.6 +/- 1.6 min with ALM and 21.3 +/- 0.9 min with PL. During hypoxic exercise, the potential benefit of greater saturation with ALM is apparently offset by other unidentified factors.  相似文献   

11.
In trout and salmon, the metabolic costs of exercise and feeding are additive, which would suggest that gastrointestinal blood flow during exercise is maintained to preserve digestive and absorptive processes related to the specific dynamic action (SDA) of food. However, in most published studies, gastrointestinal blood flow drops during swimming, hypoxia, and general stress. To test whether gastrointestinal blood flow is spared during exercise after feeding, sea bass were instrumented with flow probes to measure cardiac output and celiacomesenteric blood flow while swimming in a respirometer before and after feeding. Swimming at 2 body lengths per second (bl s(-1)) increased metabolic rate considerably more than did feeding (208% vs. 32% increase, respectively, relative to resting), and a similar pattern was observed for cardiac output. In unfed fish, resting gastrointestinal blood flow was 13.8+/-0.5 mL min(-1) kg(-1). After feeding, resting gastrointestinal blood flow increased by 82% but then decreased progressively with increasing swimming speeds. At 2 bl s(-1), gastrointestinal blood flow in fed fish was not significantly different compared with that in unfed swimming fish, and, therefore, the data do not support the gastrointestinal sparing hypothesis. The magnitude of the SDA was maintained despite the decrease in gastrointestinal blood flow and the consequent reduction in oxygen supply to the gut. An estimate of maximal oxygen flow to the gastrointestinal tract after feeding yielded 2.6 mmol O(2) h(-1) kg(-1), but this amount is not able to cover the oxygen demand of 3.16 mmol O(2) h(-1) kg(-1). Therefore, the SDA must reflect metabolic processes in tissues other than those directly perfused by the celiacomesenteric artery.  相似文献   

12.
Effect of pentoxiphylline on oxygen transport during hypothermia   总被引:2,自引:0,他引:2  
At least two investigators have demonstrated a reduction in O2 extraction during induced hypothermia (Cain and Bradley, J. Appl. Physiol. 55: 1713-1717, 1983; Schumacker et al., J. Appl. Physiol. 63: 1246-1252, 1987). We hypothesized that administration of pentoxiphylline (PTX), a theobromine that lowers blood viscosity and has vasodilator effects, would increase O2 extraction during hypothermia. To test this hypothesis, we studied O2 transport in anesthetized, paralyzed, mechanically ventilated beagles exposed to hypoxic hypoxia during either 1) normothermia (38 degrees C), 2) hypothermia (30 degrees C), or 3) hypothermia + PTX (30 degrees C and PTX, 20 mg.kg-1.h-1). Measurements included arterial and mixed venous PO2, hemoglobin concentration and saturation, cardiac output, systemic vascular resistance (SVR), blood viscosity, and O2 consumption (VO2). Critical levels of O2 delivery (DO2, the product of arterial O2 content and cardiac output) were determined by a system of linear regression. Hypothermia significantly decreased base line cardiac output (-35%), DO2 (-37%), and VO2 (-45%), while increasing SVR and blood viscosity. Addition of PTX increased cardiac output (35%) and VO2 (14%), and returned SVR and blood viscosity to normothermic levels. Hypothermia alone failed to significantly reduce the critical level of DO2, but addition of PTX did [normothermia, 11.4 +/- 4.2 (SD) ml.kg-1.min-1; hypothermia, 9.3 +/- 3.6; hypothermia + PTX, 6.6 +/- 1.3; P less than 0.05, analysis of variance]. The O2 extraction ratio (VO2/DO2) at the critical level of DO2 was decreased during hypothermia alone (normothermia, 0.60 +/- 0.13; hypothermia, 0.42 +/- 0.16; hypothermia + PTX, 0.62 +/- 0.19; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Patients with the adult respiratory distress syndrome (ARDS) show a pathological dependence of O2 consumption (VO2) on O2 delivery (QO2, blood flow X arterial O2 content). In these patients, a defect in tissues' ability to extract O2 from blood can leave tissue O2 needs unmet, even at a normal QO2. Endotoxin administration produces a similar state in dogs, and we used this model to study mechanisms that may contribute to human pathology. We measured systemic and hindlimb VO2 and QO2 while reducing cardiac output by blood withdrawal. At the onset of supply dependence, the systemic QO2 was 11.4 +/- 2.7 ml.kg-1.min-1 in the endotoxin group vs. 8.0 +/- 0.7 in controls (P less than 0.05). At this point, the endotoxin-treated animals extracted only 61 +/- 11% of the arterial O2, whereas control animals extracted 70 +/- 7% (P less than 0.05). Systemic VO2 rose by 15% after endotoxin (P less than 0.05) but did not change in controls. Despite this poorer systemic ability to extract O2 by the endotoxin-treated dogs, isolated hindlimb O2 extraction at the onset of supply dependence was the same in endotoxin-treated and control dogs. At normal levels of QO2, hindlimb VO2 in endotoxin-treated dogs was 23% higher than in controls (P less than 0.05). Fractional blood flow to skeletal muscle did not differ between control and endotoxin-treated dogs. Thus skeletal muscle was not overperfused in endotoxemia and did not contribute to a systemic extraction defect by stealing blood flow from other tissues. Skeletal muscle in endotoxin-treated dogs demonstrated an increase in VO2 but no defect in O2 extraction, differing in both respects from the intestine.  相似文献   

14.
The regional distribution of O2 deficit in muscle and nonmuscle tissues was measured in hypermetabolic dogs ventilated with a low inspired O2 fraction and was compared with excess O2 used in these regions during normoxic recovery. O2 uptake was stimulated by 2,4-dinitrophenol (DNP). Arterial, mixed venous, and muscle venous blood samples were drawn before, during, and after severe hypoxia (9% O2-91% N2) for the calculation of hindlimb O2 uptake and cardiac output. The O2 deficit and excess O2 uptake in recovery were calculated as the cumulative differences between normoxic control and respective hypoxic and recovery O2 uptake values. The DNP data were compared with data previously obtained in our laboratory. A greater whole-body O2 deficit was incurred in the DNP group during hypoxia and was associated with a larger O2 use in recovery. The total O2 deficit was equally distributed between muscle and nonmuscle tissues, but more excess O2 use occurred in nonmuscle tissues. The greater excess O2 used by nonmuscle tissues may have been associated with the restoration of intracellular ion concentrations brought about by the increased activity of energy-using membrane pumps.  相似文献   

15.
Operation Everest II: preservation of cardiac function at extreme altitude   总被引:8,自引:0,他引:8  
Hypoxia at high altitude could depress cardiac function and decrease exercise capacity. If so, impaired cardiac function should occur with the extreme, chronic hypoxemia of the 40-day simulated climb of Mt. Everest (8,840 m, barometric pressure of 240 Torr, inspiratory O2 pressure of 43 Torr). In the five of eight subjects having resting and exercise measurements at the barometric pressures of 760 Torr (sea level), 347 Torr (6,100 m), 282 Torr (7,620 m), and 240 Torr, heart rate for a given O2 uptake was higher with more severe hypoxia. Slight (6 beats/min) slowing of the heart rate occurred only during exercise at the lowest barometric pressure when arterial blood O2 saturations were less than 50%. O2 breathing reversed hypoxemia but never increased heart rate, suggesting that hypoxic depression of rate, if present, was slight. For a given O2 uptake, cardiac output was maintained. The decrease in stroke volume appeared to reflect decreased ventricular filling (i.e., decreased right atrial and wedge pressures). O2 breathing did not increase stroke volume for a given filling pressure. We concluded that extreme, chronic hypoxemia caused little or no impairment of cardiac rate and pump functions.  相似文献   

16.
Potassium release through ATP-sensitive potassium (K(ATP)) channels contributes to hypoxic vasodilation in the skeletal muscle vascular bed: It is uncertain whether K(ATP) channels on muscle cells contribute to the process. Potassium from muscle cells must cross the interstitial space to reach the vascular tissues, whereas that from vascular endothelium would have a higher concentration in venous blood than in interstitial fluid. We determined the effect of systemic hypoxia on arterial, venous, and interstitial potassium in the constant-flow-perfused gracilis muscles of anesthetized dogs. Hypoxia reduced arterial Po(2) from 138 to 25 and Pco(2) from 28 to 26 mmHg. Arterial pH and potassium were well correlated (r(2) = 0.9): Both increased in early hypoxia and decreased during the postcontrol. In denervated muscles, perfusion pressure decreased from 95 to 76 mmHg by the end of the hypoxic period; neither venous nor interstitial potassium was elevated. In innervated muscles, perfusion pressure increased from 110 to 172 mmHg by the 11th min of hypoxia and then decreased to 146 mmHg by the end of the hypoxic period; venous potassium increased from 5.0 to 5.3 mM, but interstitial potassium remained unchanged. Glibenclamide abolished both the increase in venous potassium and the hypoxic vasodilation in the innervated muscle. Thus skeletal muscle cells were unlikely to have contributed to the release of potassium, which was suggested to originate from vascular endothelium. The sympathetic nerve supply may play a direct or indirect role in the opening of K(ATP) channels under hypoxic conditions.  相似文献   

17.
We determined the effect of 20 nights of live high, train low (LHTL) hypoxic exposure on lactate kinetics, monocarboxylate lactate transporter proteins (MCT1 and MCT4), and muscle in vitro buffering capacity (betam) in 29 well-trained cyclists and triathletes. Subjects were divided into one of three groups: 20 consecutive nights of hypoxic exposure (LHTLc), 20 nights of intermittent hypoxic exposure [four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia (LHTLi)], or control (Con). Rates of lactate appearance (Ra), disappearance (Rd), and oxidation (Rox) were determined from a primed, continuous infusion of l-[U-14C]lactic acid tracer during 90 min of steady-state exercise [60 min at 65% peak O2 uptake (VO(2 peak)) followed by 30 min at 85% VO(2 peak)]. A resting muscle biopsy was taken before and after 20 nights of LHTL for the determination of betam and MCT1 and MCT4 protein abundance. Ra during the first 60 min of exercise was not different between groups. During the last 25 min of exercise at 85% VO(2 peak), Ra was higher compared with exercise at 65% of VO(2 peak) and was decreased in LHTLc (P < 0.05) compared with the other groups. Rd followed a similar pattern to Ra. Although Rox was significantly increased during exercise at 85% compared with 65% of VO(2 peak), there were no differences between the three groups or across trials. There was no effect of hypoxic exposure on betam or MCT1 and MCT4 protein abundance. We conclude that 20 consecutive nights of hypoxia exposure decreased whole body Ra during intense exercise in well-trained athletes. However, muscle markers of lactate metabolism and pH regulation were unchanged by the LHTL intervention.  相似文献   

18.
An increased hematocrit could enhance peripheral O2 transport during exercise by improving arterial O2 content. Conversely, it could reduce maximal delivery of O2 by limiting cardiac output during exercise or by limiting the distribution of blood flow to peripheral capillaries with high O2 extractions. We studied O2 transport at rest and during graded treadmill exercise in splenectomized tracheostomized dogs at normal hematocrit (38 +/- 3%), and 48 h after transfusion of type-matched donor cells. This procedure increased hematocrit (60 +/- 3%) but also increased blood volume (P less than 0.05). Following transfusion, resting cardiac output (QT) and heart rate were not different. During exercise, QT was significantly lower at each level of O2 consumption (VO2) at high hematocrit (P less than 0.01). A reduction in QT was also seen during polycythemic exercise with hypoxemia produced by breathing 12 or 10% O2 in N2. Despite the reduction in QT, mixed venous PO2 was not lower at high hematocrit, and the increase in base deficit with VO2 was not different from control measurements. O2 delivery (QT X arterial content) was similar at each level of VO2 at both levels of hematocrit, during both normoxic and hypoxic studies. Both systemic and pulmonary arterial pressures were increased at rest after transfusion (P less than 0.05). However, pulmonary and systemic pressures were not higher than control during exercise at high hematocrit. We conclude that a hematocrit of 60% with increased blood volume is not associated with a cardiac limitation of O2 delivery, nor does it interfere with peripheral O2 extraction during exercise in the dog.  相似文献   

19.
Gut metabolism may become anaerobic before the whole body during progressive phlebotomy in dogs. Because dopamine has selective mesenteric vasodilator effects, we asked whether dopamine could delay onset of bowel ischemia during hemorrhagic shock. We studied whole body and gut O2 consumption (VO2) and O2 delivery (QO2) using progressive phlebotomy in anesthetized pigs. Nine pigs received a dopamine infusion of 2 micrograms.kg-1.min-1, whereas a control group of seven pigs received equivalent saline infusion. Onset of ischemia in whole body and gut was determined as critical O2 delivery (QO2c), the intersection point of biphasic regression on plots of VO2-QO2 relationships. Blood flow and O2 extraction were measured as mechanisms of gut ischemia for entire in situ small and large gut using a superior mesenteric venous fistula. Dopamine hastened onset of gut ischemia relative to onset of whole body ischemia (gut critical point in terms of whole body QO2 9.9 +/- 2.1 ml O2.kg-1.min-1, whole body QO2c 7.8 +/- 0.7 ml O2.kg-1.min-1, P less than 0.01). In contrast, onset of gut ischemia in control animals occurred at same time as onset of whole body ischemia (gut critical point in terms of whole body QO2 7.4 +/- 2.3 ml O2.kg-1.min-1, whole body QO2c 7.1 +/- 2.7 ml O2.kg-1.min-1, P = not significant). Hastening of onset of gut ischemia in dopamine-treated animals was associated with decreased ability of gut to extract O2. Low-dose dopamine was not protective against gut ischemia during shock but rather caused earlier onset of gut ischemia during hemorrhagic shock.  相似文献   

20.

Background

It is well known that hypoxic exercise in healthy individuals increases limb blood flow, leg oxygen extraction and limb vascular conductance during knee extension exercise. However, the effect of hypoxia on cardiac output, and total vascular conductance is less clear. Furthermore, the oxygen delivery response to hypoxic exercise in well trained individuals is not well known. Therefore our aim was to determine the cardiac output (Doppler echocardiography), vascular conductance, limb blood flow (Doppler echocardiography) and muscle oxygenation response during hypoxic knee extension in normally active and endurance-trained males.

Methods

Ten normally active and nine endurance-trained males (VO2max = 46.1 and 65.5 mL/kg/min, respectively) performed 2 leg knee extension at 25, 50, 75 and 100% of their maximum intensity in both normoxic and hypoxic conditions (FIO2 = 15%; randomized order). Results were analyzed with a 2-way mixed model ANOVA (group × intensity).

Results

The main finding was that in normally active individuals hypoxic sub-maximal exercise (25 – 75% of maximum intensity) brought about a 3 fold increase in limb blood flow but decreased stroke volume compared to normoxia. In the trained group there were no significant changes in stroke volume, cardiac output and limb blood flow at sub-maximal intensities (compared to normoxia). During maximal intensity hypoxic exercise limb blood flow increased approximately 300 mL/min compared to maximal intensity normoxic exercise.

Conclusion

Cardiorespiratory fitness likely influences the oxygen delivery response to hypoxic exercise both at a systemic and limb level. The increase in limb blood flow during maximal exercise in hypoxia (both active and trained individuals) suggests a hypoxic stimulus that is not present in normoxic conditions.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号