首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
3-nitrotyrosine (NO2Tyr), an L-tyrosine derivative during nitrative stress, can substitute the COOH-terminal tyrosine of alpha-tubulin, posttranslationally altering microtubular functions. Because infection of the cells by respiratory syncytial virus (RSV) may require intact microtubules, we tested the hypothesis that NO2Tyr would inhibit RSV infection and intracellular signaling via nitrotyrosination of alpha-tubulin. A human bronchial epithelial cell line (BEAS-2B) was incubated with RSV with or without NO2Tyr. The release of chemokines and viral particles and activation of interferon regulatory factor-3 (IRF-3) were measured. Incubation with NO2Tyr increased nitrotyrosinated alpha-tubulin, and NO2Tyr colocalized with microtubules. RSV-infected cells released viral particles, RANTES, and IL-8 in a time- and dose-dependent manner, and intracellular RSV proteins coprecipitated with alpha-tubulin. NO2Tyr attenuated the RSV-induced release of RANTES, IL-8, and viral particles by 50-90% and decreased alpha-tubulin-associated RSV proteins. 3-chlorotyrosine, another L-tyrosine derivative, had no effects. NO2Tyr also inhibited the RSV-induced shift of the unphosphorylated form I of IRF-3 to the phosphorylated form II. Pre-exposure of the cells to NO(2) (0.15 ppm, 4 h), which produced diffuse protein tyrosine nitration, did not affect RSV-induced release of RANTES, IL-8, or viral particles. NO2Tyr did not affect the potential of viral spreading to the neighboring cells since the RSV titers were not decreased when the uninfected cells were cocultured with the preinfected cells in NO2Tyr-containing medium. These results indicate that NO2Tyr, by replacing the COOH-terminal tyrosine of alpha-tubulin, attenuated RSV infection, and the inhibition appeared to occur at the early stages of RSV infection.  相似文献   

2.
Abstract— An acidic protein has been isolated from the optic lobes of two cephalopods, Sepia officinalis and Loligo vulgaris. The protein has been obtained in pure form by fractionation with ammonium sulphate and chromatography on DEAE-cellulose and Sephadex G 100. Its apparent molecular weight is 13,000–15,000. Glutamic and aspartic acids account for 35 per cent of the amino acid residues. The protein binds Ca2+ ions with an apparent dissociation constant of 2·5 × 10−5 M at physiological concentrations of KCI. Antibodies have been prepared against the protein purified from Sepia officinalis. By the micro-complement fixation technique it has been shown that the protein is highly concentrated in the nervous system of cephalopods and that the amount in the axoplasm of squid giant axons is eight to nine-fold higher than in the optic lobes of the same animal.  相似文献   

3.
Nitric oxide (NO) is a precursor of reactive nitrating species, peroxynitrite and nitrogen dioxide, which modify proteins to generate oxidized species such as 3-nitrotyrosine that has been used as a hallmark of peroxynitrite-mediated oxidative stress on proteins. In the last few years however, a growing body of evidence indicates that NO also regulates a myriad of physiologic responses by modifying tyrosine residues. Looking for the molecular event triggered by NO in nerve growth factor (NGF)-induced neuronal differentiation, we recently reported that in differentiating PC12 cells, the cytoskeleton becomes the main cellular fraction containing nitrotyrosinated proteins, and alpha-tubulin is the major target. In the present work, we focus on the investigation of the sites of tyrosine nitration in alpha-tubulin purified by two-dimensional gel electrophoresis following anti-alpha-tubulin immunoprecipitation of protein extract from NGF-treated PC12 cells. Using Western blotting and matrix-assisted laser desorption/ionization-time of flight analysis, we show for the first time, both in vivo and in vitro, that nitration can occur on alpha-tubulin at sites other than the C-terminus and we positively identify Tyr 161 and Tyr 357 as two specific amino acids endogenously nitrated.  相似文献   

4.
The idiosepiid cuttlefish is a suitable organism for behavioral, genetic, and developmental studies. As morphological bases for these studies, organization of the nervous system was examined in Idiosepius paradoxus Ortmann, 1881, using Cajal's silver technique and immunohistochemical staining with anti-acetylated alpha-tubulin antibody. The nervous architecture is generally identical to that described in Sepia and Loligo, but some features characterize the idiosepiid nervous system. The olfactory system is highly developed in the optic tract region. The dorsolateral lobes show large neuropils, connected with each other by a novel well-fasciculated commissure. Each olfactory lobe is subdivided into two lobules. The neuropils of the anterior and the posterior chromatophore lobes are very poorly developed. Neuronal gigantism is not extensive in the brain; enlarged neuronal cells are visible only in the perikaryal layer of the posterior subesophageal mass. The giant nerve fiber system is of the Sepia type; the axons are not markedly thick and the first-order giant fibers do not fuse with each other at the chiasma. Three-dimensional images by whole-mount immunostaining clarified the innervation pattern in the peripheral nervous system in detail. Two commissural fibers link the left and right posterior funnel nerves ventrally and dorsally. The stellate commissure, which is absent in Sepia and Sepiola, connects the stellate ganglia with each other. A branch of the visceral nerve innervating the median pallial adductor muscle is characteristically thick. Tubulinergic reactivity of the cilia and axons reveals the presence of many ciliated cells giving off an axon toward brain nerves in the surface of the funnel, head integument, arm tips, and epidermal lines. Some of these features seem to reflect the inactive nekto-benthic life of the idiosepiid cuttlefish in the eelgrass bed.  相似文献   

5.
The ubiquitin/proteasome pathway plays an essential role in protein turnover in vivo, and contributes to removal of oxidatively damaged proteins. We examined the effects of proteasome inhibition on viability, oxidative damage and antioxidant defences in NT-2 and SK-N-MC cell lines. The selective proteasome inhibitor, lactacystin (1 microM) caused little loss of viability, but led to significant increases in levels of oxidative protein damage (measured as protein carbonyls), ubiquitinated proteins, lipid peroxidation and 3-nitrotyrosine, a biomarker of the attack of reactive nitrogen species (such as peroxynitrite, ONOO(-)) upon proteins. Higher levels (25 microM) of lactacystin did not further increase the levels of carbonyls, lipid peroxidation, 3-nitrotyrosine, or ubiquitinated proteins, but produced increases in the levels of 8-hydroxyguanine (a biomarker of oxidative DNA damage) and falls in levels of GSH. Lactacystin (25 microM) caused loss of viability, apparently by apoptosis, and also increased production of nitric oxide (NO.) (measured as levels of NO2- plus NO3-) by the cells; this was inhibited by N-nitro-L-arginine methyl ester (L-NAME), which also decreased cell death induced by 25 microM lactacystin and decreased levels of 3-nitrotyrosine. The NO. production appeared to involve nNOS; iNOS or eNOS were not detectable in either cell type. Another proteasome inhibitor, epoxomicin, had similar effects.  相似文献   

6.
Peroxynitrite, formed in a rapid reaction of nitric oxide (NO) and superoxide anion radical (O(2)), is thought to mediate protein tyrosine nitration in various inflammatory and infectious diseases. However, a recent in vitro study indicated that peroxynitrite exhibits poor nitrating efficiency at biologically relevant steady-state concentrations (Pfeiffer, S., Schmidt, K., and Mayer, B. (2000) J. Biol. Chem. 275, 6346-6352). To investigate the molecular mechanism of protein tyrosine nitration in intact cells, murine RAW 264.7 macrophages were activated with immunological stimuli, causing inducible NO synthase expression (interferon-gamma in combination with either lipopolysaccharide or zymosan A), followed by the determination of protein-bound 3-nitrotyrosine levels and release of potential triggers of nitration (NO, O(2)*, H(2)O(2), peroxynitrite, and nitrite). Levels of 3-nitrotyrosine started to increase at 16-18 h and exhibited a maximum at 20-24 h post-stimulation. Formation of O(2) was maximal at 1-5 h and decreased to base line 5 h after stimulation. Release of NO peaked at approximately 6 and approximately 9 h after stimulation with interferon-gamma/lipopolysaccharide and interferon-gamma/zymosan A, respectively, followed by a rapid decline to base line within the next 4 h. NO formation resulted in accumulation of nitrite, which leveled off at about 50 microm 15 h post-stimulation. Significant release of peroxynitrite was detectable only upon treatment of cytokine-activated cells with phorbol 12-myristate-13-acetate, which led to a 2.2-fold increase in dihydrorhodamine oxidation without significantly increasing the levels of 3-nitrotyrosine. Tyrosine nitration was inhibited by azide and catalase and mimicked by incubation of unstimulated cells with nitrite. Together with the striking discrepancy in the time course of NO/O(2) release versus 3-nitrotyrosine formation, these results suggest that protein tyrosine nitration in activated macrophages is caused by a nitrite-dependent peroxidase reaction rather than peroxynitrite.  相似文献   

7.
The oxygen-insensitive nitroreductases nfsA and nfsB are known to reduce para-nitrated aromatic compounds. We tested the hypothesis that these nitroreductases are capable of reducing 3-nitrotyrosine in proteins and peptides, as well as in free amino acids using wild-type and nfsA nfsB mutant strains of Escherichia coli. E. coli homogenates were incubated with nitrated proteins and the level of 3-nitrotyrosine immunoreactivity was assayed by Western blotting. Assay conditions that allow the nitroreductases to rapidly reduce nitrofurantoin did not result in the modification of 3-nitrotyrosine in protein, peptide, or free amino acid. Stimulation of nfsA nfsB activity with paraquat had no effect on 3-nitrotyrosine reduction. Nonlethal exposure of E. coli to peroxynitrite/CO(2) resulted in the reproducible nitration of tyrosine residues in endogenous proteins. The degree of 3-nitrotyrosine immunoreactivity over the 2-h postexposure period did not differ between mutant and wild-type strains. These results indicate that the nfsA and nfsB enzymes do not reduce 3-nitrotyrosine.  相似文献   

8.
Hyperproliferation of vascular smooth muscle cells is a hallmark of atherosclerosis and related vascular complications. Microtubules are important for many aspects of mammalian cell responses including growth, migration and signaling. alpha-Tubulin, a component of the microtubule cytoskeleton, is unique amongst cellular proteins in that it undergoes a reversible posttranslational modification whereby the C-terminal tyrosine residue is removed (Glu-tubulin) and re-added (Tyr-tubulin). Whereas the reversible detyrosination/tyrosination cycle of alpha-tubulin has been implicated in regulating various aspects of cell biology, the precise function of this posttranslational modification has remained poorly characterized. Herein, we provide evidence suggesting that alpha-tubulin detyrosination is a required event in the proliferation of vascular smooth muscle cells. Proliferation of rat aortic smooth muscle cells in response to serum was temporally associated with the detyrosination of alpha-tubulin, but not acetylation of alpha-tubulin; Glu-tubulin reached maximal levels between 12 and 18h following cell cycle initiation. Inclusion of 3-nitro-l-tyrosine (NO(2)Tyr) in the culture medium resulted in the selective nitrotyrosination of alpha-tubulin, that was paralleled by decreased elaboration of Glu-tubulin, decreased expression of cyclins A and E, decreased association of the microtubule plus-end binding protein EB1, and inhibited cell proliferation. Nitrotyrosination of alpha-tubulin did not induce necrotic or apoptotic death of rat aortic smooth muscle cells, but instead led to cell cycle arrest at the G(1)/S boundary coincident with decreased DNA synthesis. Collectively, these results suggest that the C-terminus of alpha-tubulin and its detyrosination are functionally important as a molecular switch that regulates cell cycle progression in vascular smooth muscle cells.  相似文献   

9.
A fully validated gas chromatographic-tandem mass spectrometric (GC-tandem MS) method for the accurate and precise quantification of free 3-nitrotyrosine in human plasma at the basal state is described. In the plasma of 11 healthy humans a mean concentration of 2.8 nM (range 1.4-4.2 nM) for free 3-nitrotyrosine was determined by this method. This is the lowest concentration reported for free 3-nitrotyrosine in plasma of healthy humans. The presence of endogenous free 3-nitrotyrosine in human plasma was unequivocally shown by generating a daughter mass spectrum. Various precautions had to be taken to avoid artifactual formation of 3-nitrotyrosine from nitrate during sample treatment. Endogenous plasma 3-nitrotyrosine and 3-nitro-l-[(2)H(3)]tyrosine added for use as internal standard were isolated by high-performance liquid chromatographic (HPLC) analysis of 200-microl aliquots of plasma ultrafiltrate samples (20 kDa cut-off), extracted from a single HPLC fraction by solid-phase extraction, derivatized to their n-propyl ester-pentafluoropropionyl amide-trimethylsilyl ether derivatives, and quantified by GC-tandem MS. Overall recovery was determined as 50 +/- 5% using 3-nitro-l-[(14)C(9)]tyrosine. The limit of detection of the method was 4 amol of 3-nitrotyrosine, while the limit of quantitation was 125 pM using 3-nitro-l-[(14)C(9)]tyrosine. 3-Nitrotyrosine added to human plasma at 1 nM was quantitated with an accuracy of > or = 80% and a precision of > or = 94%. The method should be useful to investigate the utility of plasma free 3-nitrotyrosine as an indicator of nitric oxide ((.)NO)-associated oxidative stress in vivo in humans.  相似文献   

10.
Peroxynitrite has been receiving increasing attention as the pathogenic mediator of nitric oxide cytotoxicity. In most cases, the contribution of peroxynitrite to diseases has been inferred from detection of 3-nitrotyrosine in injured tissues. However, presently it is known that other nitric oxide-derived species can also promote protein nitration. Mechanistic details of protein nitration remain under discussion even in the case of peroxynitrite, although recent literature data strongly suggest a free radical mechanism. Here, we confirm the free radical mechanism of tyrosine modification by peroxynitrite in the presence and in the absence of the bicarbonate-carbon dioxide pair by analyzing the stable tyrosine products and the formation of the tyrosyl radical at pH 5.4 and 7.4. Stable products, 3-nitrotyrosine, 3-hydroxytyrosine, and 3, 3-dityrosine, were identified by high performance liquid chromatography and UV spectroscopy. The tyrosyl radical was detected by continuous-flow and spin-trapping electron paramagnetic resonance (EPR). 3-Hydroxytyrosine was detected at pH 5.4 and its yield decreased in the presence of the bicarbonate-carbon dioxide pair. In contrast, the yields of the tyrosyl radical increased in the presence of the bicarbonate-carbon dioxide pair and correlated with the yields of 3-nitrotyrosine under all tested experimental conditions. Taken together, the results demonstrate that the promoting effects of carbon dioxide on peroxynitrite-mediated tyrosine nitration is due to the selective reactivity of the carbonate radical anion as compared with that of the hydroxyl radical. Colocalization of 3-hydroxytyrosine and 3-nitrotyrosine residues in proteins may be useful to discriminate between peroxynitrite and other nitrating species.  相似文献   

11.
Peroxynitrite (ONOO-) is a reactive nitrogen species which in vivo is often assessed by the measurement of free or protein bound 3-nitrotyrosine. Indeed, 3-nitrotyrosine has been detected in many human diseases. However, at sites of inflammation there is also production of the powerful oxidant hypochlorous acid (HOCl) formed by the enzyme myeloperoxidase. Low concentrations of HOCl (<30 microM) caused significant and rapid loss (<10 minutes) of free and protein bound 3-nitrotyrosine. In contrast, no loss of 3-nitrotyrosine was observed with hydrogen peroxide, hydroxyl radical, or superoxide generating systems. Therefore, under conditions where there is concomitant peroxynitrite and hypochlorous acid formation, such as at sites of chronic inflammation, it is possible that HOCl removes 3-nitrotyrosine. This may have implications when assessing the role of reactive nitrogen species in disease conditions and could account for some of the discrepancies reported between 3-nitrotyrosine levels in tissues.  相似文献   

12.
We have determined the content of free l-amino acids and d-aspartate in the nervous tissue of three representative cephalopods: Sepia officinalis, Octopus vulgaris, and Loligo vulgaris, and the optic lobes of adult and embryo Sepia officinalis. Taurine is the most abundant amino acid in the cephalopod nervous tissue. Its content amounts to more than 50% of the total free amino acids. The other most concentrated amino acids are Glu, Ala, Asp, and GABA. High concentrations of d-aspartate were found in the nervous tissue of all cephalopods examined (7–12 μmol/g wet tissue) which represents 50–80% of the total aspartate (d + l), depending on the animal. Among the various regions of the brain of Octopus vulgaris, d-aspartate was found to be evenly distributed in the various regions of the brain. In nerve tissue of Sepia officinalis, there is no significant difference in the pattern of free l-amino acids, in particular of the d-aspartate concentration, between adults and embryos, except for GABA, Gly, His and Thr. This suggests that d-aspartate in nerve tissue of the Cephalopoda is of endogenous origin and not a product of accumulation from exogenous sources. From a comparative study of the content of d-aspartate in the nervous tissue of different animals, we found that protostomia contain a significantly higher amount than deuterostomia. Thus, d-aspartate could be a criterion to distinguish the protostomia phyla from the deuterostomia phyla.  相似文献   

13.
We have determined the content of free l-amino acids and d-aspartate in the nervous tissue of three representative cephalopods: Sepia officinalis, Octopus vulgaris, and Loligo vulgaris, and the optic lobes of adult and embryo Sepia officinalis. Taurine is the most abundant amino acid in the cephalopod nervous tissue. Its content amounts to more than 50% of the total free amino acids. The other most concentrated amino acids are Glu, Ala, Asp, and GABA. High concentrations of d-aspartate were found in the nervous tissue of all cephalopods examined (7–12 μmol/g wet tissue) which represents 50–80% of the total aspartate (d + l), depending on the animal. Among the various regions of the brain of Octopus vulgaris, d-aspartate was found to be evenly distributed in the various regions of the brain. In nerve tissue of Sepia officinalis, there is no significant difference in the pattern of free l-amino acids, in particular of the d-aspartate concentration, between adults and embryos, except for GABA, Gly, His and Thr. This suggests that d-aspartate in nerve tissue of the Cephalopoda is of endogenous origin and not a product of accumulation from exogenous sources. From a comparative study of the content of d-aspartate in the nervous tissue of different animals, we found that protostomia contain a significantly higher amount than deuterostomia. Thus, d-aspartate could be a criterion to distinguish the protostomia phyla from the deuterostomia phyla.  相似文献   

14.
Protein 3-nitrotyrosine (3-NY) immunoreactivity of rat brain homogenate was localized to a ca. 50 kDa protein band by western blot (WB) analysis. The nitrated proteins were localized to the raft fraction obtained by centrifugation of the homogenate in a sucrose density gradient, which contained specific raft markers such as flotillin-1 and caveolin-1. Purification of the nitrated raft proteins either by a combination of reversed-phase high-performance liquid chromatography (HPLC) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) or by immunoprecipitation (IP) with protein- and modification-specific antibodies coupled to WB and HPLC-electrospray ionization-tandem mass spectrometry (ESI--MS/MS) analysis allowed us to identify two proteins modified by 3-NY: flotillin-1 and alpha-tubulin. Both alpha- and beta-tubulin were detected in the rat brain raft fraction as abundant proteins, which co-immunoprecipitate with flotillin-1 and caveolin-1. Importantly, some protein-protein interactions in rafts were disrupted in 3-NY-containing proteins, e.g. caveolin-1 was dissociated from a complex with flotillin-1 and alpha-tubulin. The analysis of age dependencies did not show any significant change in protein nitration and expression of flotillin-1 and alpha-tubulin, but a decrease in the brain caveolin-1 level for old (34 months) versus young (6 months) rats. The putative mechanism of nitric oxide synthase (NOS) activity regulation by the level of caveolin expression and raft protein-protein interactions is discussed.  相似文献   

15.
Chemical, biochemical, and immunohistochemical evidence is reported demonstrating the presence in the brain of the cuttlefish Sepia officinalis of a Ca2+-dependent nitric oxide synthase, NMDAR2/3 receptor subunits, and glutamate, occurring in neurons and fibers functionally related to the inking system. Nitric oxide synthase activity was concentrated for the most part in the cytosolic fraction and was masked by other citrulline-forming enzyme(s). The labile nitric oxide synthase could be partially purified by ammonium sulfate precipitation of tissue extracts, followed by affinity chromatography on 2',5'-ADP-agarose and calmodulin-agarose. The resulting activity, immunolabeled at 150 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis by antibodies to rat neuronal nitric oxide synthase, depended on NADPH and tetrahydro-L-biopterin, and was inhibited by N(G)-nitro-L-arginine. NMDAR2/3 subunit-immunoreactive proteins migrating at 170 kDa could also be detected in brain extracts, along with glutamate (whole brain: 0.32 +/- 0.03 micromol of glutamate/mg of protein; optic lobes: 0.22 +/- 0.04; vertical complex: 0.65 +/- 0.06; basal lobes: 0.58 +/- 0.04; brachial lobe: 0.77 +/- 0.06; pedal lobe: 1.04 +/- 0.08; palliovisceral lobe: 0.86 +/- 0.05). Incubation of intact brains with 1.5 mM glutamate or NMDA or the nitric oxide donor 2-(N,N-diethylamino)diazenolate-2-oxide caused a fivefold rise in the levels of cyclic GMP, indicating operation of the glutamate-nitric oxide-cyclic GMP signaling pathway. Immunohistochemical mapping of Sepia CNS showed specific localization of nitric oxide synthase-like and NMDAR2/3-like immunoreactivities in the lateroventral palliovisceral lobe, the visceral lobe, and the pallial and visceral nerves, as well as in the sphincters and wall of the ink sac.  相似文献   

16.
In the cephalopod mollusk Octopus vulgaris, the gonadotropic hormone released by the optic gland controls sexual maturity. Several lobes of the central nervous system control the activity of this gland. In one of these lobes, the olfactory lobe, a gonadotropin releasing hormone (GnRH) neuronal system has been described. We assume that several inputs converge on the olfactory lobes in order to activate GnRH neurons and that a glutamatergic system mediates the integration of stimuli on these neuropeptidergic neurons. The presence of N-methyl-d-aspartate (NMDA) receptor immunoreactivity in the neuropil of olfactory lobes and in the fibers of the optic gland nerve, along with the GnRH nerve endings strongly supports this hypothesis. A distinctive role in the control of GnRH secretion has also been attributed, in vertebrates, to nitric oxide (NO). The lobes and nerves involved in the nervous control of reproduction in Octopus contain nitric oxide synthase (NOS). Using a set of experiments aimed at manipulate a putative l-glutamate/NMDA/NO signal transduction pathway, we have demonstrated, by quantitative real-time PCR, that NMDA enhances the expression of GnRH mRNA in a dose-response manner. The reverting effect of a selective antagonist of NMDA receptors (NMDARs), 2-amino-5-phosphopentanoic acid (D-APV), confirms that such an enhancing action is a NMDA receptor-mediated response. Nitric oxide and calcium also play a positive role on GnRH mRNA expression. The results suggest that in Octopusl-glutamate could be a key molecule in the nervous control of sexual maturation.  相似文献   

17.
Protein tyrosine nitration--functional alteration or just a biomarker?   总被引:1,自引:0,他引:1  
Protein 3-nitrotyrosine is a posttranslational modification found in many pathological conditions from acute to chronic diseases. Could 3-nitrotyrosine formation participate on the basis of these diseases or is it just a marker connected with the associated nitroxidative stress? In vitro and in vivo data, including proteomic research, show that protein tyrosine nitration is a selective process where only a small amount of proteins is found nitrated and one or a few tyrosine residues are modified in each. Accumulating data suggest a strong link between protein 3-nitrotyrosine and the mechanism involved in disease development. In this review, we analyze the factors determining protein 3-nitrotyrosine formation, the functional and biological outcome associated with protein tyrosine nitration, and the fate of the nitrated proteins.  相似文献   

18.
The consequences of altering the levels of alpha- and beta-tubulin in Saccharomyces cerevisiae were examined by constructing fusions of the structural genes encoding the tubulins to strong galactose-inducible promoters. Overexpression of beta-tubulin (TUB2) was lethal: cells arrested in the G2 stage of the cell cycle exhibited an increased frequency of chromosome loss, were devoid of microtubules, and accumulated beta-tubulin in a novel structure. Overexpression of the major alpha-tubulin gene (TUB1) was not lethal and did not affect chromosome segregation. The rate of alpha-tubulin mRNA and protein synthesis was increased, but the protein did not accumulate. Overexpression of both alpha- and beta-tubulin together resulted in arrested cell division, and cells accumulated excess tubules that contained both alpha- and beta-tubulin. Transient overexpression of both tubulins resulted in a high frequency of chromosome loss. These data suggest that strong selective pressure exists to prevent excess accumulation of microtubules or beta-tubulin and suggest a model by which this goal may be achieved by selective degradation of unassembled alpha-tubulin. Furthermore, the phenotype of beta-tubulin overexpression is similar to the phenotype of a beta-tubulin deficiency. These results add to a number of recent studies demonstrating that mutant phenotypes generated by overexpression can be informative about the function of the gene product.  相似文献   

19.
L-Tyrosine and L-tyrosine residues in proteins are attacked by various reactive-nitrogen species (RNS) including peroxynitrite to form 3-nitrotyrosine (NO(2)Tyr) and protein-associated 3-nitrotyrosine (NO(2)TyrProt). Circulating NO(2)Tyr and NO(2)TyrProt have been suggested and are widely used as biomarkers of oxidative stress in humans. In this article the mass spectrometry (MS)-based analytical methods recently reported for the quantification of circulating levels of NO(2)Tyr and NO(2)TyrProt are discussed. These methodologies differ in sensitivity, selectivity, specificity and accessibility to interferences with the latter mainly arising from artifactual formation of NO(2)Tyr and NO(2)TyrProt during sample treatment such as acidification and chemical derivatization. Application of these methodologies to healthy normal humans revealed basal circulating levels for NO(2)Tyr which range between 0.7 and 64 nM, i.e. by two orders of magnitude. Application of gas chromatography-tandem mass spectrometry (GC-tandem MS) methods by two independent research groups by using two different protocols to avoid artifactual nitration of L-tyrosine revealed almost identical mean plasma levels of the order of 1.0 nM in healthy humans. The lower limits of quantitation (LOQ) of these methods were 0.125 and 0.3n M, respectively. This order of magnitude for basal NO(2)Tyr is supported by two liquid chromatography-tandem mass spectrometry (LC-tandem MS) methods with LOQ values of 4.4 and 1.4 nM. On the basis of the data provided by GC-tandem MS and LC-tandem MS the use of a range of 0.5-3 nM for NO(2)Tyr and of 0.6 pmol/mg plasma protein or a molar ratio of 3-nitrotyrosine to tyrosine in plasma proteins of the order of 1:10(6) for NO(2)TyrProt in plasma of healthy humans as reference values appear reasonably justified. Recently reported clinical studies involving 3-nitrotyrosine as a biomarker of oxidative stress are discussed in particular from the analytical point of view.  相似文献   

20.
The nitration of free tyrosine or protein tyrosine residues generates 3-nitrotyrosine the detection of which has been utilised as a footprint for the in vivo formation of peroxynitrite and other reactive nitrogen species. The detection of 3-nitrotyrosine by analytical and immunological techniques has established that tyrosine nitration occurs under physiological conditions and levels increase in most disease states. This review provides an updated, comprehensive and detailed summary of the tissue, cellular and specific protein localisation of 3-nitrotyrosine and its quantification. The potential consequences of nitration to protein function and the pathogenesis of disease are also examined together with the possible effects of protein nitration on signal transduction pathways and on the metabolism of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号