首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work uses alpha-conotoxin ImI (CTx ImI) to probe the neurotransmitter binding site of neuronal alpha7 acetylcholine receptors. We identify key residues in alpha7 that contribute to CTx ImI affinity, and use mutant cycles analysis to identify pairs of residues that stabilize the receptor-conotoxin complex. We first mutated key residues in the seven known loops of alpha7 that converge at the subunit interface to form the ligand binding site. The mutant subunits were expressed in 293 HEK cells, and CTx ImI binding was measured by competition against the initial rate of 125I-alpha-bungarotoxin binding. The results reveal a predominant contribution by Tyr-195 in alpha7, accompanied by smaller contributions by Thr-77, Tyr-93, Asn-111, Gln-117, and Trp-149. Based upon our previous identification of bioactive residues in CTx ImI, we measured binding of receptor and toxin mutations and analyzed the results using thermodynamic mutant cycles. The results reveal a single dominant interaction between Arg-7 of CTx ImI and Tyr-195 of alpha7 that anchors the toxin to the binding site. We also find multiple weak interactions between Asp-5 of CTx ImI and Trp-149, Tyr-151, and Gly-153 of alpha7, and between Trp-10 of CTx ImI and Thr-77 and Asn-111 of alpha7. The overall results establish the orientation of CTx ImI as it bridges the subunit interface and demonstrate close approach of residues on opposing faces of the alpha7 binding site.  相似文献   

2.
The present work delineates pairwise interactions underlying the nanomolar affinity of alpha-conotoxin MI (CTx MI) for the alpha-delta site of the muscle acetylcholine receptor (AChR). We mutated all non-cysteine residues in CTx MI, expressed the alpha(2)betadelta(2) pentameric form of the AChR in 293 human embryonic kidney cells, and measured binding of the mutant toxins by competition against the initial rate of (125)I-alpha-bungarotoxin binding. The CTx MI mutations P6G, A7V, G9S, and Y12T all decrease affinity for alpha(2)betadelta(2) pentamers by 10,000-fold. Side chains at these four positions localize to a restricted region of the known three-dimensional structure of CTx MI. Mutations of the AChR reveal major contributions to CTx MI affinity by Tyr-198 in the alpha subunit and by the selectivity determinants Ser-36, Tyr-113, and Ile-178 in the delta subunit. By using double mutant cycles analysis, we find that Tyr-12 of CTx MI interacts strongly with all three selectivity determinants in the delta subunit and that deltaSer-36 and deltaIle-178 are interdependent in stabilizing Tyr-12. We find additional strong interactions between Gly-9 and Pro-6 in CTx MI and selectivity determinants in the delta subunit, and between Ala-7 and Pro-6 and Tyr-198 in the alpha subunit. The overall results reveal the orientation of CTx MI when bound to the alpha-delta interface and show that primarily hydrophobic interactions stabilize the complex.  相似文献   

3.
Long chain curarimimetic toxins from snake venom bind with high affinities to both muscular type nicotinic acetylcholine receptors (AChRs) (K(d) in the pm range) and neuronal alpha 7-AChRs (K(d) in the nm range). To understand the molecular basis of this dual function, we submitted alpha-cobratoxin (alpha-Cbtx), a typical long chain curarimimetic toxin, to an extensive mutational analysis. By exploring 36 toxin mutants, we found that Trp-25, Asp-27, Phe-29, Arg-33, Arg-36, and Phe-65 are involved in binding to both neuronal and Torpedo (Antil, S., Servent, D., and Ménez, A. (1999) J. Biol. Chem. 274, 34851-34858) AChRs and that some of them (Trp-25, Asp-27, and Arg-33) have similar binding energy contributions for the two receptors. In contrast, Ala-28, Lys-35, and Cys-26-Cys-30 selectively bind to the alpha 7-AChR, whereas Lys-23 and Lys-49 bind solely to the Torpedo AChR. Therefore, alpha-Cbtx binds to two AChR subtypes using both common and specific residues. Double mutant cycle analyses suggested that Arg-33 in alpha-Cbtx is close to Tyr-187 and Pro-193 in the alpha 7 receptor. Since Arg-33 of another curarimimetic toxin is close to the homologous alpha Tyr-190 of the muscular receptor (Ackermann, E. J., Ang, E. T. H., Kanter, J. R., Tsigelny, I., and Taylor, P. (1998) J. Biol. Chem. 273, 10958-10964), toxin binding probably occurs in homologous regions of neuronal and muscular AChRs. However, no coupling was seen between alpha-Cbtx Arg-33 and alpha 7 receptor Trp-54, Leu-118, and Asp-163, in contrast to what was observed in a homologous situation involving another toxin and a muscular receptor (Osaka, H., Malany, S., Molles, B. E., Sine, S. M., and Taylor, P. (2000) J. Biol. Chem. 275, 5478-5484). Therefore, although occurring in homologous regions, the detailed modes of toxin binding to alpha 7 and muscular receptors are likely to be different. These data offer a molecular basis for the design of toxins with predetermined specificities for various members of the AChR family.  相似文献   

4.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

5.
Examination of 76 homologous neurotoxin sequences suggested that the "toxic" domain of these compounds consists of twelve highly conserved residues. Five of these, namely Lys-27, Trp-29, Asp-31, Arg-33 and Glu-38, together with a variant residue at position 36 are organized into a pattern which resembles that of d-tubocurarine. Two lines of experimental evidence are in agreement with the proposed topology of the "toxic" site in Naja nigricollis toxin alpha--Three highly conserved residues (Lys-27, Trp-29 and Lys-47) have been modified individually in toxin alpha. These modifications induce a decrease in binding affinity of toxin alpha for its target, the nicotinic acetylcholine receptor. In contrast, modifications of three residues (Leu-1, Lys-15 and Lys-51) excluded from the "toxic" domain, do not alter the binding properties of toxin alpha.--Five toxin derivatives carrying a nitroxide group at residues 1, 15, 27, 47 or 51 have been prepared. ESR spectra have been recorded for each derivative in both the free state and bound to the receptor. Mobility of the probes of the residues excluded from the "toxic" site is not altered upon receptor binding. In contrast mobility of the nitroxide of the presumed "toxic" Lys-47 becomes markedly reduced after toxin receptor complex formation. Lys-27 nitroxide is immobilized in both the free and bound state. The antigenic structure of N. nigricollis toxin alpha has been partially clarified using two different approaches. --Fifteen antigenically important residues of toxin alpha have been identified by analyzing cross-reactions between toxin alpha and eleven homologous neurotoxins, using polyclonal antibodies.--- One monoclonal antibody (M alpha 1) specific for toxin alpha has been prepared. Competition experiments, made with (3H) toxin alpha, six mono modified toxin derivatives or alpha three homologous neurotoxins, showed that the binding site of (M alpha 1) comprises the N-terminal group, Lys-15, Pro-18 and probably Thr-16. This site is topographically different from the "toxic" domain. (M alpha 1) inhibits the toxicity of toxin alpha under both in vivo and in vitro conditions. In addition, (M alpha 1) is capable of "removing" toxin molecules bound to the receptor, allowing a rapid recovery of the functional properties of the receptor.  相似文献   

6.
The effects of amino acid substitutions in helix F of bacteriorhodopsin on the photocycle of this light-driven proton pump were studied. The photocycles of Ser-183----Ala and Glu-194----Gln mutants were qualitatively similar to that of wild-type bacteriorhodopsin produced in Escherichia coli and bacteriorhodopsin from Halobacterium halobium. The substitution of a Phe for either Trp-182 or Trp-189 significantly reduced the fraction of photocycling bacteriorhodopsin. The amino acid substitutions Tyr-185----Phe and Ser-193----Ala substantially increased the lifetime of the photocycle without substantially increasing the lifetime of the M photocycle intermediate. Similar results were also obtained with the Pro-186----Gly substitution. In contrast, replacing Pro-186 with the larger residue Leu inhibited the formation of the M photocycle intermediate. These results are consistent with a structural model of the retinal-binding pocket suggested by low-temperature UV/visible and Fourier transform infrared difference spectroscopies that has Trp-182, Tyr-185, Pro-186, and Trp-189 forming part of the binding pocket.  相似文献   

7.
Class II major histocompatibility complex proteins bind peptides for presentation to T-cells as part of the immune response process. Monoclonal antibody MEM-265 recognizes the peptide-free conformation of the major histocompatibility complex class II protein HLA-DR1 through specific binding to an epitope contained between residues 50-67 of the beta-chain. In previous work using alanine scanning (1), we identified residues Leu-53, Asp-57, Tyr-60, Trp-61, Ser-63, and Leu-67 as essential for specific recognition by MEM-265. The spacing of these residues approximates a 3.5-residue repeat, suggesting that MEM-265 may recognize the epitope in an alpha-helical conformation. In the folded, peptide-loaded DR1 structure, the beta-chain residues 50-67 contain a kinked alpha-helical segment spanning Glu-52-Ser-63 (2). However, the conformation of this segment in the peptide-free form is unknown. We have used a new surface plasmon resonance approach in a SpotMatrix format to compare the kinetic rates and affinities for 18 alanine scanning mutants comprising epitope residues 50-67. In addition to the six essential residues described previously, we found two additional residues, Glu-52 and Gln-64, that contribute by enhancing MEM-265 binding. By contrast, mutation of either Gly-54 or Pro-56 to an alanine actually improved binding to MEM-265. In essentially all cases peptide substitutions that either improve or reduce MEM-265 recognition could be traced to differences in the dissociation rate (k off). The kinetic details of the present study support the presence of a structural component in the antigenic epitope recognized by MEM-265 in the peptide-free form of major histocompatibility complex II DR1 beta-chain.  相似文献   

8.
The recent elucidation of crystal structures of a bacterial member of the NCS1 family, the Mhp1 benzyl-hydantoin permease from Microbacterium liquefaciens, allowed us to construct and validate a three-dimensional model of the Aspergillus nidulans purine-cytosine/H+ FcyB symporter. The model consists of 12 transmembrane α-helical, segments (TMSs) and cytoplasmic N- and C-tails. A distinct core of 10 TMSs is made of two intertwined inverted repeats (TMS1–5 and TMS6–10) that are followed by two additional TMSs. TMS1, TMS3, TMS6, and TMS8 form an open cavity that is predicted to host the substrate binding site. Based on primary sequence alignment, three-dimensional topology, and substrate docking, we identified five residues as potentially essential for substrate binding in FcyB; Ser-85 (TMS1), Trp-159, Asn-163 (TMS3), Trp-259 (TMS6), and Asn-354 (TMS8). To validate the role of these and other putatively critical residues, we performed a systematic functional analysis of relevant mutants. We show that the proposed substrate binding residues, plus Asn-350, Asn-351, and Pro-353 are irreplaceable for FcyB function. Among these residues, Ser-85, Asn-163, Asn-350, Asn-351, and Asn-354 are critical for determining the substrate binding affinity and/or the specificity of FcyB. Our results suggest that Ser-85, Asn-163, and Asn-354 directly interact with substrates, Trp-159 and Trp-259 stabilize binding through π-π stacking interactions, and Pro-353 affects the local architecture of substrate binding site, whereas Asn-350 and Asn-351 probably affect substrate binding indirectly. Our work is the first systematic approach to address structure-function-specificity relationships in a eukaryotic member of NCS1 family by combining genetic and computational approaches.  相似文献   

9.
The effects of amino acid substitutions in the carboxyl terminal region of the H(+)-ATPase a subunit (271 amino acid residues) of Escherichia coli were studied using a defined expression system for uncB genes coded by recombinant plasmids. The a subunits with the mutations, Tyr-263----end, Trp-231----end, Glu-219----Gln, and Arg-210----Lys (or Gln) were fully defective in ATP-dependent proton translocation, and those with Gln-252----Glu (or Leu), His-245----Glu, Pro-230----Leu, and Glu-219----His were partially defective. On the other hand, the phenotypes of the Glu-269----end, Ser-265----Ala (or end), and Tyr-263----Phe mutants were essentially similar to that of the wild-type. These results suggested that seven amino acid residues between Ser-265 and the carboxyl terminus were not required for the functional proton pathway but that all the other residues except Arg-210, Glu-219, and His-245 were required for maintaining the correct conformation of the proton pathway. The results were consistent with a report that Arg-210 is directly involved in proton translocation.  相似文献   

10.
Computer analysis of the crystallographic structure of the A subunit of Escherichia coil heat-labile toxin (LT) was used to predict residues involved in NAD binding, catalysis and toxicity. Following site-directed mutagenesis, the mutants obtained could be divided into three groups. The first group contained fully assembled, non-toxic new molecules containing mutations of single amino acids such as Val-53 → Glu or Asp, Ser-63 → Lys, Val-97 → Lys, Tyr-104 → Lys or Asp, and Ser-14 → Lys or Glu. This group also included mutations in amino acids such as Arg-7, Glu-110 and Glu-112 that were already known to be important for enzymatic activity. The second group was formed by mutations that caused the collapse or prevented the assembly of the A subunit: Leu-41 → Phe, Ala-45 → Tyr or Glu, Val-53 → Tyr, Val-60 → Gly, Ser-68 → Pro, His-70 → Pro, Val-97 → Tyr and Ser-114 → Tyr. The third group contained those molecules that maintained a wild-type level of toxicity in spite of the mutations introduced: Arg-54 → Lys or Ala, Tyr-59 → Met, Ser-68 → Lys, Ala-72 → Arg, His or Asp and Arg-192 → Asn. The results provide a further understanding of the structure–function of the active site and new, non-toxic mutants that may be useful for the development of vaccines against diarrhoeal diseases.  相似文献   

11.
The sweetness-suppressing polypeptide gurmarin isolated from Gymnema sylvestre consists of 35 amino acid residues and contains three intramolecular disulfide bonds. Nuclear magnetic resonance analysis showed that the hydrophobic side chains of Tyr-13, Tyr-14, Trp-28, and Trp-29 in gurmarin are oriented outwardly. Together with the hydrophobic side chains of Leu-9, Ile-11, and Pro-12, they form a hydrophobic cluster, and therefore these hydrophobic groups are assumed to act as the site for interaction with the receptor protein. To examine the roles of these hydrophobic amino acids, they were replaced by Gly. The resulting [Gly13,14,28,29]gurmarin and [Gly9,11,13,14,28,29]gurmarin did not suppress the responses to sucrose, glucose, fructose, or Gly. This result strongly suggests that these hydrophobic amino acids are involved in the interaction with the receptor protein. © 1998 John Wiley & Sons, Inc. Biopoly 45: 231–238, 1998  相似文献   

12.
We have used a homology model of the extracellular domain of the 5-HT(3) receptor to dock granisetron, a 5-HT(3) receptor antagonist, into the binding site using AUTODOCK. This yielded 13 alternative energetically favorable models. The models fell into 3 groups. In model type A the aromatic rings of granisetron were between Trp-90 and Phe-226 and its azabicyclic ring was between Trp-183 and Tyr-234, in model type B this orientation was reversed, and in model type C the aromatic rings were between Asp-229 and Ser-200 and the azabicyclic ring was between Phe-226 and Asn-128. Residues located no more than 5 A from the docked granisetron were identified for each model; of 26 residues identified, 8 were found to be common to all models, with 18 others being represented in only a subset of the models. To identify which of the docking models best represents the ligand-receptor complex, we substituted each of these 26 residues with alanine and a residue with similar chemical properties. The mutant receptors were expressed in human embryonic kidney (HEK)293 cells and the affinity of granisetron determined using radioligand binding. Mutation of 2 residues (Trp-183 and Glu-129) ablated binding, whereas mutation of 14 other residues caused changes in the [(3)H]granisetron binding affinity in one or both mutant receptors. The data showed that residues both in and close to the binding pocket can affect antagonist binding and overall were found to best support model B.  相似文献   

13.
A fusion protein consisting of the TrpE protein and residues 166-211 of the Torpedo acetylcholine receptor alpha 1 subunit was produced in Escherichia coli using a pATH10 expression vector. Residues in the Torpedo sequence were changed by means of oligonucleotide-directed mutagenesis to residues present in snake alpha 1 subunit and rat nerve alpha 3 subunit which do not bind alpha-bungarotoxin. The fusion protein of the Torpedo sequence bound 125I-alpha-bungarotoxin with high affinity (IC50 = 2.5 x 10(-8) M from competition with unlabeled toxin, KD = 2.3 x 10(-8) M from equilibrium saturation binding data). Mutation of three Torpedo residues to snake residues, W184F, K185W, and W187S, had no effect on binding. Conversion of two additional Torpedo residues to snake, T191S and P194L, reduced alpha-bungarotoxin binding to undetectable levels. The P194L mutation alone abolished toxin binding. Mutation of three Torpedo alpha 1 residues to neuronal alpha 3-subunit residues, W187E, Y189K, and T191N, also abolished detectable alpha-bungarotoxin binding. Conversion of Try-189 to Asn which is present in the snake sequence (Y189N) abolished toxin binding. It is concluded that in the sequence of the alpha subunit of Torpedo encompassing Cys-192 and Cys-193, Try-189 and Pro-194 are important determinants of alpha-bungarotoxin binding. Tyr-189 may interact directly with cationic groups or participate in aromatic-aromatic interactions while Pro-194 may be necessary to maintain a conformation conductive to neurotoxin binding.  相似文献   

14.
The structural and folding requirements of eukaryotic cytochromes c have been investigated by determining the appropriate DNA sequences of a collection of 46 independent cyc 1 missense mutations obtained in the yeast Saccharomyces cerevisiae and by deducing the corresponding amino acid replacements that abolish function of iso-1-cytochrome c. A total of 33 different replacements at 19 amino acid positions were uncovered in this and previous studies. Because all of these nonfunctional iso-1-cytochromes c are produced at far below the normal level and because a representative number are labile in vitro, most of the replacements appear to be affecting stability of the protein or heme attachment. By considering the tertiary structure of related cytochromes c, the loss of function of most of the mutant iso-1-cytochromes c could be attributed to either replacements of critical residues that directly interact with the heme group or to replacements that disrupt the proper folding of the protein. The replacements of residues interacting with the heme group include those required for covalent attachment (Cys-19 and Cys-22), ligand formation (His-23 and Met-85), and formation of the immediate heme environment (Leu-37, Tyr-53, Trp-64, and Leu-73). Proper folding of the protein is prevented by replacements of glycine residues at sites that cannot accommodate side chains (Gly-11 and Gly-34); by replacements of residues with proline, which limit the torsion angle (Leu-14 and His-38); and by replacements apparently unable to direct the local folding of the backbone into the proper conformation (Pro-35, Tyr-72, Asn-75, Pro-76, Lys-84, Leu-99, and Leu-103). Even though most of the missense mutations occurred at sites corresponding to evolutionarily invariant or conserved residues, a consideration of the replacements in functional revertants indicates that the requirement for residues evolutionarily preserved is less stringent than commonly assumed.  相似文献   

15.
In the cyanobacterium Anacystis nidulans (Synechococcus PCC6301), ribulose 1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase) is composed of eight large subunits and eight small subunits. There are three regions of the small subunit that contain amino acids that are conserved throughout evolution, from bacteria to higher plants. Since the function of the small subunit is not fully understood, site-directed mutagenesis was performed on highly conserved residues in the first and second conserved regions. Ser-16, Pro-19, Leu-21, and Tyr-54 were replaced by Asp-16, His-19, Glu-21, and Ser-54, respectively. Crude extracts containing the recombinant His-19 mutant enzyme indicated that there was little effect on either Rbu-P2 carboxylase activity or interactions between large and small subunits. However, the Asp-16, Glu-21, and Ser-54 mutations showed effects on Rbu-P2 carboxylase activity and the interaction between large and small subunits. The large and small subunits of the Asp-16, Glu-21, and Ser-54 enzymes were found to dissociate during nondenaturing gel electrophoresis or sucrose density gradient centrifugation. However, the dissociated small subunits remained functional and were capable of reconstituting Rbu-P2 carboxylase activity when added to large subunits. These results indicated that Ser-16, Leu-21, and Tyr-54 might play an important role in interactions between large and small subunits of the A. nidulans enzyme.  相似文献   

16.
The precursor to corticotropin and beta-endorphin was synthesized in a reticulocyte cell-free system under the direction of mRNA from mouse AtT-20 pituitary tumor cells in the presence of [3H]proline, [3H]phenylalanine, [3H]leucine, [3H]valine, [3H]isoleucine or [35S]methionine. Automatic Edman degradation of the radioactive cell-free product showed the following N-terminal sequence: Pro-1, Met-2, Leu-11, Leu-12, Leu-13, Leu-15, Leu-16, Leu-17, Ile-21 and Val-23. The corticotropin-endorphin precursor was also labeled in AtT-20 cells with [3H]valine, [3H]leucine, [3H]tryptophan, [3H]serine, [35S]methionine or [35S]cysteine. Automatic Edman degradation of the radioactive intact cell form gave the following N-terminal sequence: Trp-1, Cys-2, Leu-3, Ser-5, Ser-6, Val-7, Cys-8, Leu-11, Leu-17, Leu-18 and tentatively Met-27. The sequence of the intact cell form from AtT-20 cells matches the sequence of the cell-free form of bovine pituitary precursor beginning at Trp-27, as determined by recombinant DNA technology [Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N., and Numa, S. (1979) Nature (Lond.) 278, 423-427]. The sequence of the mouse pituitary mRNA-directed cell-free translation product also matches the bovine precursor beginning at Pro-2. The results suggest that both the mouse and bovine precursors possess a signal sequence of 26 amino acids which is cleaved in intact cells. CNBr cleavage of [35S]cysteine-labelled intact cell precursor gave rise to an N-terminal fragment of a size compatible with the presence of a methionyl residue at or near position 27.  相似文献   

17.
A docking model of the alpha(2) I-domain and collagen has been proposed based on their crystal structures (Emsley, J., King, S., Bergelson, J., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517). In this model, several amino acid residues in the I-domain make direct contact with collagen (Asn-154, Asp-219, Leu-220, Glu-256, His-258, Tyr-285, Asn-289, Leu-291, Asn-295, and Lys-298), and the protruding C-helix of alpha(2) (residues 284-288) determines ligand specificity. Because most of the proposed critical residues are not conserved, different I-domains are predicted to bind to collagen differently. We found that deleting the entire C-helix or mutating the predicted critical residues had no effect on collagen binding to whole alpha(2)beta(1), with the exception that mutating Asn-154, Asp-219, and His-258 had a moderate effect. We performed further studies and found that mutating the conserved surface-exposed residues in the metal ion-dependent adhesion site (MIDAS) (Tyr-157 and Gln-215) significantly blocks collagen binding. We have revised the docking model based on the mutagenesis data. In the revised model, conserved Tyr-157 makes contact with collagen in addition to the previously proposed Asn-154, Asp-219, His-258, and Tyr-285 residues. These results suggest that the collagen-binding I-domains (e.g. alpha(1), alpha(2), and alpha(10)) bind to collagen in a similar fashion.  相似文献   

18.
The antithrombotic monoclonal antibody 82D6A3 is directed against amino acids Arg-963, Pro-981, Asp-1009, Arg-1016, Ser-1020, Met-1022, and His-1023 of the von Willebrand factor A3-domain (Vanhoorelbeke, K., Depraetere, H., Romijn, R. A., Huizinga, E., De Maeyer, M., and Deckmyn, H. (2003) J. Biol. Chem. 278, 37815-37821). By this, it potently inhibits the interaction of von Willebrand factor to collagens, which is a prerequisite for blood platelet adhesion to the injured vessel wall at sites of high shear. To fully understand the mode of action of 82D6A3 at the molecular level, we resolved its crystal structure in complex with the A3-domain and fine mapped its paratope by construction and characterization of 13 mutants. The paratope predominantly consists of two short sequences in the heavy chain CDR1 (Asn-31 and Tyr-32) and CDR3 (Asp-99, Pro-101, Tyr-102 and Tyr-103), forming one patch on the surface of the antibody. Trp-50 of the heavy and His-49 of the light chain, both situated adjacent to the patch, play ancillary roles in antigen binding. The crystal structure furthermore confirms the epitope location, which largely overlaps with the collagen binding site deduced from mutagenesis of the A3-domain (Romijn, R. A., Westein, E., Bouma, B., Schiphorst, M. E., Sixma, J. J., Lenting, P. J., and Huizinga, E. G. (2003) J. Biol. Chem. 278, 15035-15039). We herewith further consolidate the location of the collagen binding site and reveal that the potent action of the antibody is due to direct competition for the same interaction site. This information allows the design of a paratope-mimicking peptide with antithrombotic properties.  相似文献   

19.
A phage peptide library was used to select peptides interacting with virus-neutralizing monoclonal antibodies (mAb) 2G12 which recognize a discontinuous surface epitope of HIV-1 gp120. With the published X-ray data, gp120 regions involved in the antigenic determinant were predicted. Binding with mAb 2G12 was ascribed to Trh-297, Phe-383, Tyr-384, Arg-419, Ile-420, Thr-415, Leu-416, Pro-417, Lys-421, and Trp-112. Though distant in the gp120 sequence, these residues are close in space and form the 2G12 epitope on the gp120 surface.  相似文献   

20.
J Bubis  S S Taylor 《Biochemistry》1987,26(12):3478-3486
Each regulatory subunit of the cAMP-dependent protein kinase contains two in-tandem cAMP binding sites. Photolabeling of holoenzyme I with 8-azidoadenosine 3',5'-monophosphate (8-N3-cAMP) leads to the covalent modification of two residues, Trp-260 and Tyr-371. In order to correlate photolabeling of these two residues with occupancy of each specific cAMP binding site, photolabeling was carried out in the presence of various analogues of cAMP that bind preferentially to one site. Photolabeling of holoenzyme I after dissociation of 60% of 8-N3-[3H]cAMP with an excess of N6-monobutyryl-cAMP nearly abolished the incorporation of 8-N3-cAMP into Trp-260, whereas the modification of Tyr-371 was reduced by 49%. When 8-N3-[32P]cAMP was bound under equilibrium conditions in the presence of various cAMP analogues, N6-monobutyryl-cAMP also selectively abolished incorporation of radioactivity into Trp-260, whereas 8-(methylamino)-cAMP preferentially reduced the covalent modification of Tyr-371. Photolabeling with trace amounts of 8-N3-[32P]cAMP in the presence of saturating amounts of N6-monobutyryl-cAMP led to the covalent modification of only Tyr-371. In addition, photolabeling of Tyr-371 was enhanced synergistically in the presence of N6-monobutyryl-cAMP. MgATP reduced the covalent modification of both Trp-260 and Tyr-371 but showed no selectivity for either site. These studies support a model that correlates photolabeling of Trp-260 with occupancy of cAMP binding site A and photolabeling of Tyr-371 with occupancy of cAMP binding site B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号