首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The alpha subunit of a voltage-sensitive sodium channel characteristic of denervated rat skeletal muscle was cloned and characterized. The cDNA encodes a 2018 amino acid protein (SkM2) that is homologous to other recently cloned sodium channels, including a tetrodotoxin (TTX)-sensitive sodium channel from rat skeletal muscle (SkM1). The SkM2 protein is no more homologous to SkM1 than to the rat brain sodium channels and differs notably from SkM1 in having a longer cytoplasmic loop joining domains 1 and 2. Steady-state mRNA levels for SkM1 and SkM2 are regulated differently during development and following denervation: the SkM2 mRNA level is highest in early development, when TTX-insensitive channels predominate, but declines rapidly with age as SkM1 mRNA increases; SkM2 mRNA is not detectable in normally innervated adult skeletal muscle but increases greater than 100-fold after denervation; rat cardiac muscle has abundant SkM2 mRNA but no detectable SkM1 message. These findings suggest that SkM2 is a TTX-insensitive sodium channel expressed in both skeletal and cardiac muscle.  相似文献   

2.
Macroscopic current from the microI skeletal muscle sodium channel expressed in Xenopus oocytes shows inactivation with two exponential components. The major, slower component's amplitude decreases with rapid pulsing. When microI cRNA is coinjected with rat skeletal muscle or brain mRNA the faster component becomes predominant. Individual microI channels switch between two principal gating modes, opening either only once per depolarization, or repeatedly in long bursts. These two modes differ in both activation and inactivation kinetics. There is also evidence for additional gating modes. It appears that the equilibrium among gating modes is influenced by a modulating factor encoded in rat skeletal muscle and brain mRNA. The modal gating is similar to that observed in hyperkalemic periodic paralysis.  相似文献   

3.
4.
Antibodies against a peptide (SP19) corresponding to a highly conserved, predicted intracellular region of the sodium channel alpha subunit bind rat brain sodium channels with a similar affinity as the peptide antigen, indicating that the corresponding segment of the alpha subunit is fully accessible in the intact channel structure. These antibodies recognize sodium channel alpha subunits from rat or eel brain, rat skeletal muscle, rat heart, eel electroplax, and locust nervous system. alpha subunits from all these tissues except rat skeletal muscle are substrates for phosphorylation by cAMP-dependent protein kinase. Disulfide linkage of alpha and beta 2 subunits was observed for both the RI and RII subtypes of rat brain sodium channels and for sodium channels from eel brain but not for sodium channels from rat heart, eel electroplax, or locust nerve cord. Treatment with neuraminidase reduced the apparent molecular weight of sodium channel alpha subunits from rat and eel brain and eel electroplax by 22,000-58,000, those from heart by 8000, and those from locust nerve cord by less than 4000. Our results provide the first identification of sodium channel alpha subunits from rat heart and locust brain and nerve cord and show that sodium channel alpha subunits are expressed with different subunit associations and posttranslational modifications in different excitable tissues.  相似文献   

5.
A cDNA clone encoding a protein with high homology to the beta-subunit of the rabbit skeletal muscle dihydropyridine-sensitive calcium channel was isolated from a rat brain cDNA library. This rat brain beta-subunit cDNA hybridizes to a 3.4 kb message that is expressed in high levels in the cerebral hemispheres and hippocampus but is significantly reduced in cerebellum. The open reading frame encodes 597 amino acids with a predicted mass of 65 679 Da which is 82% homologous with the skeletal muscle beta-subunit. The brain cDNA encodes a unique 153 amino acid C-terminus and predicts the absence of a muscle-specific 50 amino acid internal segment. It also encodes numerous consensus phosphorylation sites suggesting a role in calcium channel regulation. The corresponding human beta-subunit gene was localized to chromosome 17. Hence the encoded brain beta-subunit, which has a primary structure highly similar to its isoform in skeletal muscle, may have a comparable role as an integral regulatory component of a neuronal calcium channel.  相似文献   

6.
J Offord  W A Catterall 《Neuron》1989,2(5):1447-1452
The number of sodium channels increases sharply during development of rat skeletal muscle cells in vitro. An 8.5 kb mRNA encoding sodium channel alpha subunit rises to a peak on day 13 in vitro and falls to a value of 50% of the peak by day 18, consistent with the conclusion that mRNA abundance is a major determinant of the rapid rise in sodium channel number. Electrical activity and increased cytosolic calcium decrease the level of alpha subunit mRNA, and cAMP increases its level in parallel with changes in the number of sodium channels. The similarity between the changes in mRNA levels and sodium channel density indicates that the regulation of alpha subunit mRNA level is an important mechanism of feedback regulation of sodium channel density by electrical activity in developing rat muscle cells.  相似文献   

7.
Complementary DNA encoding rat protein phosphatase 2C alpha was obtained from a liver library and used to isolate the homologous cDNAs from rabbit liver and human teratocarcinoma libraries. The amino acid sequences of the three enzymes deduced from the cDNA (382 amino acids) were extremely similar (greater than 99% identity), the maximum number of differences (between rat and human) being four. Amino acid sequences of peptides corresponding to 238 residues (61%) of the protein phosphatase 2C beta isoform from rabbit skeletal muscle were determined and showed 12 differences from the recently published sequence of the rat liver enzyme deduced from the cDNA (95% identity).  相似文献   

8.
Alpha B-crystallin in skeletal muscle: purification and localization.   总被引:6,自引:0,他引:6  
Atrophy of rat soleus muscles by hindlimb suspension is characterized by an early dramatic decrease in a soluble 22-kDa protein. The 22-kDa protein was purified from rat red skeletal muscle and rat lens by three different methods of chromatography. The partial amino acid sequence (65% of total amino acids) determined for muscle 22-kDa protein was identical with that of rat lens crystallin. The HPLC elution patterns of lysylendopeptidase fragments of 22-kDa protein from the two sources were identical. Polyclonal antibodies to rat muscle and bovine lens alpha B-crystallin with the two proteins on immunoblotting. alpha B-Crystallin protein was expressed and synthesized efficiently in slow skeletal muscle and poorly in fast muscle. Thus, the decreased 22-kDa protein of slow muscle in the suspension treatment was confirmed to be alpha B-crystallin. Immunoblotting confirmed that most of the alpha B-crystallin was solubilized, though some was tightly bound to myofibrils. This bound portion was localized in Z-bands of isolated myofibrils by immunocytochemical light and electron microscopy. Muscle alpha B-crystallin is tentatively proposed to be a myofibril-stabilizing protein, based upon its extraction characteristics, localization, and amino acid sequence.  相似文献   

9.
Cyclic AMP-dependent phosphorylation of the rat brain sodium channel was reported to be restricted to five sites within an approximately 210 amino acid region of the primary sequence that is deleted in the homologous sodium channel from rat skeletal muscle. We find that, in spite of this deletion, the rat muscle sodium channel alpha-subunit is also an excellent substrate for phosphorylation by this kinase both in primary muscle cells in tissue culture and in vitro after isolation from adult muscle. Sodium channel protein purified from adult rat skeletal muscle was readily phosphorylated in vitro by the catalytic subunit of the bovine cyclic AMP-dependent protein kinase (PKa). Only the 260,000 MW alpha-subunit was labeled, with a maximum level of incorporation in vitro of approximately 0.5 mol [32P]phosphate per mole of channel protein. The beta-subunit of the channel is not phosphorylated under these conditions. In primary rat skeletal muscle cells in culture, incorporation of phosphate into the channel alpha-subunit is stimulated 1.3- to 1.5-fold by treatment of the cells with forskolin. Phosphorylation of the sodium channel isolated from these cells could also be demonstrated in vitro using PKa. This in vitro phosphorylation could be inhibited 80-90% by pretreatment of the cells in culture with forskolin, suggesting that the sites labeled in vitro by PKa were the same as those phosphorylated in the intact cells by the endogenous cyclic AMP-dependent kinase. In both the adult muscle channel and the channel from muscle cells in culture, phosphorylation by PKa was limited to serine residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The inhibitor protein (PKI) of the cAMP-dependent protein kinase was first characterized from rabbit skeletal muscle. More recently a form of PKI was isolated and cloned from rat testis which shares relatively limited amino acid sequence with the rabbit skeletal muscle form. We have now isolated a cDNA from rat brain which encodes a protein corresponding to the rabbit skeletal muscle PKI. This establishes the presence of the "skeletal muscle" and "testis" proteins in the same species and therefore that they clearly represent distinct isoforms. We have also demonstrated that the isoform from testis, like the skeletal muscle isoform, is specific for the cAMP-dependent protein kinase and that it is able to inhibit this enzyme when expressed in cultured JEG-3 cells. Both forms contain the five specific amino acid recognition determinants which have been shown to be required for high affinity binding to the protein kinase catalytic site, although there is some noted lack of conservation of codons used for these residues. Overall, the two rat isoforms are only 41% identical at the amino acid level and 46% at the level of coding nucleotides. We propose that the rabbit skeletal muscle and rat testis forms be designated PKI alpha and PKI beta, respectively. Using Northern blot analysis, we have examined the tissue distribution of the two forms in the rat and their relative expression during development. In the adult rat, mRNA of the PKI alpha species is highest in muscle (both skeletal and cardiac) and brain (cortex and cerebellum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A cDNA expression library of approximately 80,000 members was prepared from rat embryonic fibroblast mRNA using the plasmid expression vectors pUC8 and pUC9. Using an immunological screening procedure and 32P-labeled cDNA probes, clones encoding rat embryonic fibroblast tropomyosin 1 (TM-1) were identified and isolated. DNA sequence analysis was carried out to determine the amino acid sequence of the protein. Rat embryonic fibroblast TM-1 was found to contain 284 amino acids and is most homologous to smooth muscle alpha-tropomyosin compared with skeletal muscle alpha- and beta-tropomyosins and platelet beta-tropomyosin. Among the various tropomyosins, two regions where the greatest sequence divergence is evident are between amino acids 185 and 216 and amino acids 258 and 284. Rat embryonic fibroblast TM-1 and chicken smooth muscle alpha-tropomyosin are most closely related from amino acids 185 and 216 compared with skeletal muscle and platelet tropomyosins. In contrast, rat embryonic fibroblast TM-1, smooth muscle alpha-tropomyosin, and platelet tropomyosin are most homologous from amino acids 258 and 284 compared with skeletal muscle tropomyosins. These differences in sequences at the carboxyl-terminal region of the various tropomyosins are discussed in relation to differences in their binding to skeletal muscle troponin and its T1 fragment.  相似文献   

12.
Xenopus oocytes were used to express polyadenylated messenger RNAs (mRNAs) encoding acetylcholine receptors and voltage-activated sodium channels from innervated and denervated skeletal muscles of cat and rat. Oocytes injected with mRNA from denervated muscle acquired high sensitivity to acetylcholine, whereas those injected with mRNA from innervated muscle showed virtually no response. Hence the amount of translationally active mRNA encoding acetylcholine receptors appears to be very low in normally innervated muscle, but increases greatly after denervation. Conversely, voltage-activated sodium currents induced by mRNA from innervated muscle were about three times larger than those from denervated muscle; this result suggests that innervated muscle contains more mRNA coding for sodium channels. The sodium current induced by mRNA from denervated muscle was relatively more resistant to block by tetrodotoxin. Thus a proportion of the sodium channels in denervated muscle may be encoded by mRNAs different from those encoding the normal channels.  相似文献   

13.
While studying the adult rat skeletal muscle Na+ channel outer vestibule, we found that certain mutations of the lysine residue in the domain III P region at amino acid position 1237 of the alpha subunit, which is essential for the Na+ selectivity of the channel, produced substantial changes in the inactivation process. When skeletal muscle alpha subunits (micro1) with K1237 mutated to either serine (K1237S) or glutamic acid (K1237E) were expressed in Xenopus oocytes and depolarized for several minutes, the channels entered a state of inactivation from which recovery was very slow, i.e., the time constants of entry into and exit from this state were in the order of approximately 100 s. We refer to this process as "ultra-slow inactivation". By contrast, wild-type channels and channels with the charge-preserving mutation K1237R largely recovered within approximately 60 s, with only 20-30% of the current showing ultra-slow recovery. Coexpression of the rat brain beta1 subunit along with the K1237E alpha subunit tended to accelerate the faster components of recovery from inactivation, as has been reported previously of native channels, but had no effect on the mutation-induced ultra-slow inactivation. This implied that ultra-slow inactivation was a distinct process different from normal inactivation. Binding to the pore of a partially blocking peptide reduced the number of channels entering the ultra-slow inactivation state, possibly by interference with a structural rearrangement of the outer vestibule. Thus, ultra-slow inactivation, favored by charge-altering mutations at site 1237 in micro1 Na+ channels, may be analogous to C-type inactivation in Shaker K+ channels.  相似文献   

14.
15.
16.
Several types of evidence indicate that the gene coding for the skeletal muscle actin is expressed in the rat heart: 1) A recombinant plasmid containing an insert with a nucleotide sequence identical to that of the homologous region of skeletal muscle actin gene was isolated from a cDNA library prepared on rat cardiac mRNA template. 2) Using specific probes it was found that the hearts of newborn rats contain a significant amount of skeletal muscle actin mRNA. The quantity of this mRNA in the heart decreases during development. 3) The skeletal muscle actin gene is DNAase I sensitive in nuclei from rat heart tissue. A plasmid containing a cDNA insert homologous to a part of the cardiac actin mRNA was isolated and sequenced. It was found that in spite of the great similarity between the amino acid sequence of the skeletal muscle and cardiac actins, the nucleotide sequences of the two mRNAs are considerably divergent. There is only limited sequence homology between the 3' untranslated regions of the two mRNAs. However, there is an extensive sequence homology between the 3' untranslated regions of the rat and human cardiac mRNAs, suggesting a functional role for this region of the gene or mRNA.  相似文献   

17.
We have sequenced rabbit cDNAs that encode one isoform of the alpha subunit and two isoforms of the beta subunit of phosphorylase kinase, in addition to the single isoform from fast skeletal muscle that has been characterized to date for each subunit. All these isoforms are generated by alternative RNA splicing. The alpha subunit sequence obtained from slow skeletal muscle (soleus) is characterized by an internal deletion of 59 amino acids. This deletion is predominant in mRNA from slow muscle, heart, and uterus and accounts for the smaller alpha subunit variant (alpha') characteristic of phosphorylase kinase purified from slow muscle and heart. The beta subunit mRNA can be differentially spliced at two sites. In all tissues (except skeletal muscle) that were analyzed, an internal segment encoding 28 amino acids of the muscle sequence is replaced by a homologous sequence of identical length, presumably through the use of mutually exclusive exons. In brain and some other tissues, the deduced N-terminal sequence of the beta subunit is also changed. This is achieved by an insertion into the mRNA sequence that interrupts the initial reading frame after 25 codons and starts a new reading frame, encoding a different N terminus of 18 amino acids. This modification probably affects the major regulatory phosphorylation site of the beta subunit.  相似文献   

18.
We have cloned a cDNA encoding a novel human voltage-gated sodium channel alpha subunit gene, SCN12A, from human brain. Two alternative splicing variants for SCN12A have been identified. The longest open reading frame of SCN12A encodes 1791 amino acid residues. The deduced amino acid sequence of SCN12A shows 37-73% similarity with various other mammalian sodium channels. The presence of a serine residue (S360) in the SS2 segment of domain I suggests that SCN12A is resistant to tetrodotoxin (TTX), as in the cases of rat Scn10a (rPN3/SNS) and rat Scn11a (NaN/SNS2). SCN12A is expressed predominantly in olfactory bulb, hippocampus, cerebellar cortex, spinal cord, spleen, small intestine, and placenta. Although expression level could not be determined, SCN12A is also expressed in dorsal root ganglia (DRG). Both neurons and glial cells express SCN12A. SCN12A maps to human chromosome 3p23-p21.3. These results suggest that SCN12A is a tetrodotoxin-resistant (TTX-R) sodium channel expressed in the central nervous system and nonneural tissues.  相似文献   

19.
The amino acid sequence of the sodium channel alpha subunit from adult human skeletal muscle has been deduced by cross-species PCR-mediated cloning and sequencing of the cDNA. The protein consists of 1836 amino acid residues. The amino acid sequence shows 93% identity to the alpha subunit from rat adult skeletal muscle and 70% identity to the alpha subunit from other mammalian tissues. A 500 kb YAC clone containing the complete coding sequence and two overlapping lambda clones covering 68% of the cDNA were used to estimate the gene size at 35 kb. The YAC clone proved crucial for gene structure studies as the high conservation between ion channel genes made hybridization studies with total genomic DNA difficult. Our results provide valuable information for the study of periodic paralysis and paramyotonia congenita, two inherited neurological disorders which are caused by point mutations within this gene.  相似文献   

20.
Polyacrylamide gel electrophoresis of purified rabbit skeletal muscle L-type calcium channel before and after reduction of disulfide bonds confirmed that 27- and 24-kDa forms of the delta subunit are disulfide-linked to the 143-kDa alpha 2 subunit. The amino acid sequences of three peptides obtained by tryptic digestion of the delta subunits corresponded to amino acid sequences predicted from the 3' region of the mRNA encoding alpha 2. One of these peptides had the same sequence as the N terminus of the 24- and 27-kDa forms of the delta subunit and corresponded to residues 935-946 of the predicted alpha 2 primary sequence. Anti-peptide antibodies directed to regions on the N-terminal side of this site recognized the 143-kDa alpha 2 subunit in immunoblots of purified calcium channels under reducing conditions, whereas an antipeptide antibody directed toward a sequence on the C-terminal side of this site recognized 24- and 27-kDa forms of the delta subunit. A similar result was obtained after immunoblotting using purified transverse tubules or crude microsomal membrane preparations indicating that alpha 2 and delta occur as distinct disulfide-linked polypeptides in skeletal muscle membranes. Thus, the delta subunits are encoded by the same gene as the alpha 2 subunit and are integral components of the skeletal muscle calcium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号