首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Free radical research》2013,47(3):347-356
Abstract

Oxidative stress is induced by excess accumulation of reactive oxygen and nitrogen species (RONS). Astrocytes are metabolically active cells in the brain and understanding astrocytic responses to oxidative stress is essential to understand brain pathologies. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance formation of other RONS. The present study was carried out to examine the role of insulin in H2O2-induced oxidative stress in rat astrocytic cells. To measure changes in the viability of astrocytes at different concentrations of H2O2 for 3 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based assay was used and 500 μM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 3 h of 500 μM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and calcium ion (Ca2+) in C6 cells, with insulin able to effectively diminish H2O2-induced oxidative damage to C6 cells. Western blotting studies showed that insulin treatment of astrocytes increased the levels of phosphorylated Akt and magnified the decrease in total Bcl-2 protein. The protective effect of insulin treatment on H2O2-induced oxidative stress in astrocytes by reducing apoptosis may relate to the PI3K/Akt pathway.  相似文献   

2.
3.
Abstract

Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24?h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100?µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24?h of 100?µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.  相似文献   

4.
Inflammation and oxidative stress through the production of reactive oxygen species (ROS) are consistently associated with metabolic syndrome/type 2 diabetes. Although the role of Nox2, a major ROS-generating enzyme, is well described in host defense and inflammation, little is known about its potential role in insulin resistance in skeletal muscle. Insulin resistance induced by a high fat diet was mitigated in Nox2-null mice compared with wild-type mice after 3 or 9 months on the diet. High fat feeding increased Nox2 expression, superoxide production, and impaired insulin signaling in skeletal muscle tissue of wild-type mice but not in Nox2-null mice. Exposure of C2C12 cultured myotubes to either high glucose concentration, palmitate, or H2O2 decreases insulin-induced Akt phosphorylation and glucose uptake. Pretreatment with catalase abrogated these effects, indicating a key role for H2O2 in mediating insulin resistance. Down-regulation of Nox2 in C2C12 cells by shRNA prevented insulin resistance induced by high glucose or palmitate but not H2O2. These data indicate that increased production of ROS in insulin resistance induced by high glucose in skeletal muscle cells is a consequence of Nox2 activation. This is the first report to show that Nox2 is a key mediator of insulin resistance in skeletal muscle.  相似文献   

5.
Oligodendrocytes have the highest rate of metabolic activity in the brain and are highly vulnerable to oxidative stress. In this work we determined the protective effect of Trolox, a water-soluble analogue of vitamin E, and insulin, a peptide shown to be neuroprotective, in oligodendrocyte lesion induced by hydrogen peroxide (H2O2). Exposure of primary cultures of rat oligodendrocytes to H2O2 dose-dependently decreased their reducing capacity, as determined by the MTT assay. H2O2 (100 μM) had no effect on Bax levels, active-caspase-3, DNA fragmentation or lactate dehydrogenase (LDH) leakage. Nevertheless, under these conditions, H2O2 decreased the levels of myelin basic protein (MBP), used as a marker for oligodendrocyte myelin membrane. Treatment with insulin alone increased MBP levels, but no changes were observed in the presence of insulin plus H2O2. In contrast, incubation with Trolox completely prevented H2O2-induced decrease in MBP expression, suggesting that vitamin E analogues may prevent against oligodendrocyte oxidative damage.  相似文献   

6.
Obesity is associated with systemic oxidative stress and leads to insulin resistance. Phenethyl isothiocyanate (PEITC), a natural dietary isothiocyanate, has been shown to have beneficial effects in improving cellular defense activities against oxidative stress through activation of nuclear factor erythroid-2 related factor 2 (Nrf2) pathway. However, little evidence exists if the antioxidative activity has beneficial effects on glucose metabolism. Here, we tested the preventive potential of PEITC for impaired insulin-induced glucose uptake by oxidative stress in 3T3-L1 adipocytes. Treatment with PEITC increased the expression of antioxidative enzymes regulated by Nrf2 such as γ-glutamylcysteine-synthetase, heme oxygenase 1, NAD(P)H:quinone oxidoreductase 1 and glutathione S-transferase, and reduced oxidative stress induced by H2O2. Furthermore, PEITC restored impaired insulin-stimulated glucose uptake, translocation of glucose transporter 4 and insulin signaling by H2O2. These results indicate that PEITC protected insulin-regulated glucose metabolism impaired by oxidative stress through the antioxidative activity in 3T3-L1 adipocytes.  相似文献   

7.
Oxidative stress induced by hydrogen peroxide (H2O2) may contribute to the pathogenesis of ischemic-reperfusion injury in the heart. For the purpose of investigating directly the injury potential of H2O2 on heart muscle, a cellular model of H2O2-induced myocardial oxidative stress was developed. This model employed primary monolayer cultures of intact, beating neonatal-rat cardiomy-ocytes and discrete concentrations of reagent H2O2 in defined, supplement-free culture medium. Cardiomyocytes challenged with H2O2 readily metabolized it such that the culture content of H2O2 diminished over time, but was not depleted. The consequent H2O2-induced oxidative stress caused lethal sarcolemmal disruption (as measured by lactate dehydrogenase release), and cardiomyocyte integrity could be preserved by catalase. During oxidative stress, a spectrum of cellular derangements developed, including membrane phospholipid peroxidation, thiol oxidation, consumption of the major chain-breaking membrane antiperoxidant (α-tocopherol), and ATP loss. No net change in the protein or phospholipid contents of cardiomyocyte membranes accompanied H2O2-induced oxidative stress, but an increased turnover of these membrane constituents occurred in response to H2O2. Development of lethal cardiomyocyte injury during H2O2-induced oxidative stress did not require the presence of H2O2 itself; a brief “pulse” exposure of the cardiomyocytes to H2O2 was sufficient to incite the pathogenic mechanism leading to cell disruption. Cardiomyocyte disruption was dependent upon an intracellular source of redox-active iron and the iron-dependent transformation of internalized H2O2 into products (e.g., the hydroxyl radical) capable of initiating lipid peroxidation, since iron chelators and hydroxyl-radical scavengers were cytoprotective. The accelerated turnover of cardiomyocyte-membrane protein and phospholipid was inhibited by antiperoxidants, suggesting that the turnover reflected molecular repair of oxidized membrane constituents. Likewise, the consumption of α-tocopherol and the oxidation of cellular thiols appeared to be epiphenomena of peroxidation. Antiperoxidant interventions coordinately abolished both H2O2-induced lipid peroxidation and sarcolemmal disruption, demonstrating that an intimate pathogenic relationship exists between sarcolemmal peroxidation and lethal compromise of cardiomyocyte integrity in response to H2O2-induced oxidative stress. Although sarcolemmal peroxidation was causally related to cardiomyocyte disruption during H2O2-induced oxidative stress, a nonperoxidative route of H2O2 cytotoxicity was also identified, which was expressed in the complete absence of cardiomyocyte-membrane peroxidation. The latter mode of H2O2-induced cardiomyocyte injury involved ATP loss such that membrane peroxidation and cardiomyocyte disruption on the one hand and cellular de-energization on the other could be completely dissociated. The cellular pathophysiology of H2O2 as a vectorial signal for cardiomyocyte necrosis that “triggers” irreversible peroxidative disruption of the sarcolemma has implications regarding potential mechanisms of oxidative injury in the postischemic heart.  相似文献   

8.
Increased oxidative stress contributes to the functional impairment of endothelial progenitor cells (EPCs), the pivotal players in the servicing of the endothelial cell lining. Several evidences suggest that decreasing oxidative stress by natural compounds with antioxidant properties may improve EPCs bioactivity. Here, we investigated the effects of Lisosan G (LG), a Triticum Sativum grain powder, and Lady Joy (LJ), a bean lysate, on function of EPCs exposed to oxidative stress. Peripheral blood mononuclear cells were isolated and plated on fibronectin-coated culture dishes; adherent cells, identified as early EPCs, were pre-treated with different concentrations of LG and LJ and incubated with hydrogen peroxide (H2O2). Viability, senescence, adhesion, ROS production and antioxidant enzymes gene expression were evaluated. Lysate-mediated Nrf-2 (nuclear factor (erythroid-derived 2)-like 2)/ARE (antioxidant response element) activation, a modulator of oxidative stress, was assessed by immunocytochemistry. Lady Joy 0.35–0.7 mg/ml increases EPCs viability; pre-treatment with either LG 0.7 mg/ml and LJ 0.35–0.7 mg/ml protect EPCs viability against H2O2-induced injury. LG 0.7 and LJ 0.35–0.7 mg/ml improve EPCs adhesion; pre-treatment with either LG 0.35 and 0.7 mg/ml or LJ 0.35, 0.7 and 1.4 mg/ml preserve adhesiveness of EPCs exposed to H2O2. Senescence is attenuated in EPCs incubated with lysates 0.35 mg/ml. After exposure to H2O2, LG pre-treated cells show a lower senescence than untreated EPCs. Lysates significantly decrease H2O2-induced ROS generation. Both lysates increase glutathione peroxidase-1 and superoxide dismutase-2 (SOD-2) expression; upon H2O2 exposure, pre-treatment with LJ allows higher SOD-2 expression. Heme oxigenase-1 increases in EPCs pre-treated with LG even upon H2O2 exposure. Finally, incubation with LG 0.7 mg/ml results in Nrf-2 translocation into the nucleus both at baseline and after the oxidative challenge. Our data suggest a protective effect of lysates on EPCs exposed to oxidative stress through the involvement of antioxidant systems. Lisosan G seems to activate the Nrf-2/ARE pathways.  相似文献   

9.
A positive correlation has been established between increased oxidative stress and cardiovascular diseases in diabetes mellitus. We evaluated the effects of single or combined treatments with vitamin A (retinol acetate, 30 mg/kg/day, for 12-weeks) and insulin (8-10 IU/rat/day for the final 6-week) on vasomotor activity, oxidative stress and retinol metabolism in 12-week streptozotocin diabetic rats. The vasomotor activity was determined by measuring in vitro responsiveness of aorta rings to phenylephrine (PE) and acetylcholine (ACh) in the absence or in the presence of hydrogen peroxide (H2O2). Preincubation with H2O2 (10 μM) produced a significant decrease in PE (1 mM)-induced contraction in untreated-diabetic but not in control rats. Single treatment with insulin counteracted this effect of H2O2 and also reversed the increased contractile response of diabetic aorta to PE, while vitamin A was found to be ineffective. H2O2 (10 μM) also inhibited ACh (1 mM)-stimulated endothelium- dependent relaxation two fold more in diabetic than in control aorta. In the prevention of H2O2-induced inhibition of vascular relaxation to ACh, vitamin A alone was markedly effective while insulin alone was not. The combination of vitamin A plus insulin removed the inhibitory action of H2O2 in diabetic aorta. Diabetic animals displayed an increased level of aorta thiobarbituric acid reactive substance (TBARS) in association with decreased levels of plasma retinol and retinol-binding protein (RBP). Single treatment with insulin, in spite of allowing recovery of normal growth rate and improved glucose and retinol metabolism in diabetic rats, was unable to control TBARS production to the same extent as vitamin A alone. Our findings suggest that the maintenance of ACh-stimulated endothelium-dependent vasorelaxant tone in normal physiological levels depends largely on the prevention and/or inhibition of peroxidative stress, which is achieved by combined treatment with vitamin A plus insulin. The use of vitamin A together with insulin provides a better metabolic control and more benefits than use of insulin alone in the reduction of diabetes-induced vascular complications.  相似文献   

10.
Increased cellular exposure to oxidants may contribute to the development of insulin resistance and type 2 diabetes. Skeletal muscle is the primary site of insulin-dependent glucose disposal in the body; however, the effects of oxidative stress on insulin signaling and glucose transport activity in mammalian skeletal muscle are not well understood. We therefore studied the effects of a low-level in vitro oxidant stress (30–40 μM H2O2) on basal and insulin-stimulated (5 mU/ml) glucose transport activity and insulin signaling at 2, 4, and 6 h in isolated rat soleus muscle. H2O2 increased basal glucose transport activity at 2 and 4 h, but not at 6 h. This low-level oxidant stress significantly impaired insulin-stimulated glucose transport activity at all time points, and was associated with inhibition of insulin-stimulated phosphorylation of Akt Ser473 and GSK-3β Ser9. In the presence of insulin, H2O2 decreased total protein expression of IRS-1 at 6 h and IRS-2 at 4 and 6 h. Phosphorylation of p38 MAPK Thr180/Tyr182 was transiently increased by H2O2 in the presence and absence of insulin at 2 and 4 h, but not at 6 h. Selective inhibition of p38 MAPK with A304000 partially rescued the H2O2-induced reduction in insulin-stimulated glucose transport activity. These results indicate that direct in vitro exposure of isolated mammalian skeletal muscle to a low-level oxidant stress impairs distal insulin signaling and insulin-stimulated glucose transport activity, at least in part, due to a p38 MAPK-dependent mechanism.  相似文献   

11.
12.
Hydrogen peroxide (H2O2) has been reported to be present at significant levels in the lens and aqueous humor in some cataract patients and suggested as a possible source of chronically inflicted damage to lens epithelial (LE) cells. We measured H2O2effects on bovine and mouse LE cells and determined whether LE cells from old calorically restricted mice were more resistant to H2O2-induced cellular damage than those of same age ad libitum fed (AL) mice. Bovine lens epithelial cells were exposed to H2O2at 40 or 400 μM for 2 h and then allowed to recover from the stress. The cells were assayed for DNA damage, DNA synthesis, cell viability, cell morphology, response to growth stimuli, and proliferation potential. Hydrogen peroxide-treated cells showed an increased DNA unwinding 50% greater than that for untreated controls. These DNA strand breaks appeared to be almost completely rejoined by 30 min following removal of the cells from a 2-h exposure. The 40 μM exposure did not produce a significantly lower DNA synthesis rate than the control, it responded to growth factor stimuli, and it replicated as did the control cells after removal of H2O2. The 400 μM H2O2severely affected DNA synthesis and replication, as shown by increased cell size and by markedly reduced clonal cell growth. The cells did not respond to growth stimulation by serum or growth factors and lost irreversibly the capacity to proliferate. The responses of LE cells from old adlib diet (AL) and calorically restricted (CR) mice to H2O2were significantly different. Exposure of LE cells to 20, 40, or 100 μM H2O2for 1 h induces a significant loss of cellular proliferation in cells from old AL mice. LE cells from long-term CR mice of the same strain and age were more resistant to oxidative damage at all three concentrations of H2O2than those of both old and young AL mice and showed a significantly higher proliferation potential following treatment. It is concluded that CR results in superior resistance to reactive oxygen radicals in the lens epithelium.  相似文献   

13.
It has been shown that molecular hydrogen (H2) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson''s disease (PD). Here, we show that drinking H2-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H2 showed that H2 as low as 0.08 ppm had almost the same effect as saturated H2 water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H2-containing water, whereas production of superoxide (O2) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H2 in drinking water can reduce oxidative stress in the brain. Thus, drinking H2-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.  相似文献   

14.
目的:研究降香对后负荷增加引起的的心脏功能下降的保护作用及其机制。方法:雄性C57小鼠30只,随机分为三组,分别给予假手术(sham)、主动脉弓结扎(Transverse aortic constriction,TAC)手术和主动脉弓结扎手术降香治疗(TAC+DO)处理。通过灌胃给药4周,随后超声检测心脏功能、四腔心切片观察心肌重构,RT-PCR检测左心室αMHC、βMHC的m RNA表达、相应试剂盒心肌总抗氧化能力(TAOC)和丙二醇(MDA)含量。结果:同sham组相比,TAC组射血分数(EF),αMHC m RNA水平和TOAC均显著降低,且左室舒张末内径(LVIDd)、左室舒张期后壁厚度(LVPWd)、左室质量(LV mass)、心肌质量/胫骨长度(HW/TL)及β及β度、MDA均显著增加。同TAC组相比,DO组射血分数(EF),αMHC m RNA水平和TOAC均显著增加,且左室舒张末内径(LVIDd)、舒张末室间隔厚度(IVSd)、左室质量(LV mass)、心肌质量/胫骨长度(HW/TL)及βMHC、MDA均显著下降。在离体培养的心肌细胞,H_2O_2可显著增加细胞内ROS含量,给予降香或TEMPOL处理均可减轻H_2O_2诱导的氧化应激并增加心肌细胞存活率。结论:降香可通过降低氧化应激抑制线粒体分裂并改善后负荷增加型心衰的心脏功能。  相似文献   

15.
Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in cellular defence against oxidative stress by inducing the expression of multiple anti-oxidant genes. However, where high levels of oxidative stress are observed, such as chronic obstructive pulmonary disease (COPD), Nrf2 activity is reduced, although the molecular mechanism for this defect is uncertain. Here, we show that down-regulation of histone deacetylase (HDAC) 2 causes Nrf2 instability, resulting in reduced anti-oxidant gene expression and increase sensitivity to oxidative stress. Although Nrf2 protein was clearly stabilized after hydrogen peroxide (H2O2) stimulation in a bronchial epithelial cell line (BEAS2B), Nrf2 stability was decreased and Nrf2 acetylation increased in the presence of an HDAC inhibitor, trichostatin A (TSA). TSA also reduced Nrf2-regulated heme-oxygenase-1 (HO-1) expression in these cells, and this was confirmed in acute cigarette-smoke exposed mice in vivo. HDAC2 knock-down by RNA interference resulted in reduced H2O2-induced Nrf2 protein stability and activity in BEAS2B cells, whereas HDAC1 knockdown had no effect. Furthermore, monocyte-derived macrophages obtained from healthy volunteers (non-smokers and smokers) and COPD patients showed a significant correlation between HDAC2 expression and Nrf2 expression (r = 0.92, p < 0.0001). Thus, reduced HDAC2 activity in COPD may account for increased Nrf2 acetylation, reduced Nrf2 stability and impaired anti oxidant defences.  相似文献   

16.
The Ataxia-Telangiectasia mutated (ATM) kinase is regarded as the major regulator of the cellular response to DNA double strand breaks (DSBs). In response to DSBs, ATM dimers dissociate into active monomers in a process promoted by the Mre11-Rad50-Nbs1 (MRN) complex. ATM can also be activated by oxidative stress directly in the form of exposure to H2O2. The active ATM in this case is a disulfide-crosslinked dimer containing two or more disulfide bonds. Mutation of a critical cysteine residue in the FATC domain involved in disulfide bond formation specifically blocks ATM activation by oxidative stress. Here we show that ATM activation by DSB s is inhibited in the presence of H2O2 because oxidation blocks the ability of MRN to bind to DNA . However, ATM activation via direct oxidation by H2O2 complements the loss of MRN/DSB-dependent activation and contributes significantly to the overall level of ATM activity in the presence of both DSB s and oxidative stress.Key words: ATM, DNA repair, double-strand break, oxidative stress, ROS  相似文献   

17.
Responses of marine macroalgae to hydrogen-peroxide stress   总被引:1,自引:0,他引:1  
In this study, we determined the antioxidative potential of 15 marine macroalgae by measuring the photosynthetic efficiency under artificial oxidative stress after a 30-min exposure to a series of ascending H2O2 concentrations. Species exhibiting high maximum quantum yields (Fv/Fm values) were regarded as not susceptible towards H2O2 stress. In addition to the short-term stress experiments, the antioxidative defense systems (enzymatic and non-enzymatic) of selected algal species under longer exposure times to H2O2 were investigated.Species with striking photosynthetic activity under H2O2 stress were Chaetomorpha melagonium (Chlorophyta), showing 40% reduced Fv/Fm as compared to the control after 8 days of exposure to 20 mM H2O2. In Fucus distichus (Phaeophyta) Fv/Fm decreased to 50% of the control under the same exposure conditions. Polysiphonia arctica (Rhodophyta) exhibited highest Fv/Fm values with a reduction of only 25%, therefore possessing the highest antioxidative potential of the investigated species.In P. arctica the activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), as well as the pool size of the antioxidant ascorbic acid were investigated. When exposed to different H2O2 concentrations (0-2 mM) over 6 days, the intrinsic activities of SOD and GR were stimulated. In a kinetic study over 8 days, the activity of antioxidative enzymes APX and CAT as well as ascorbic acid content were recorded. APX activity was much higher in H2O2-treated thalli at the end of the experiment than in the control, also CAT activity increased significantly with increasing H2O2 stress. In parallel, ascorbic acid content was reduced under high H2O2 concentrations. Furthermore, by using GC-MS techniques in P. arctica bromophenolic compounds with antioxidative properties were identified.This study shows that the measurement of the in vivo fluorescence of photosystem II is a suitable tool to determine the effect of oxidative stress on macroalgae. From these studies it is obvious that different algal species have varying strategies against oxidative stress which correlate with zonation on the shore.  相似文献   

18.
Hydrogen peroxide (H2O2) overload may contribute to cardiac ischemia-reperfusion injury. We report utilization of a previously described cardiomyocyte model (J. Cell. Physiol., 149:347, 1991) to assess the effect of H2O2-induced oxidative stress on heart-muscle purine and pyrimidine nucleotides and high-energy phosphates (ATP, phosphocreatine). Oxidative stress induced by bolus H2O2 elicited the loss of cardiomyocyte purine and pyrimidine nucleotides, leading to eventual de-energization upon total ATP and phosphocreatine depletion. The rate and extent of ATP and phosphocreatine loss were dependent on the degree of oxidative stress within the range of 50 μM to 1.0 mM H2O2. At the highest H2O2 concentration, 5 min was sufficient to elicit appreciable cardiomyocyte highenergy phosphate loss, the extent of which could be limited by prompt elimination of H2O2 from the culture medium. Only H2O2 dismutation completely prevented ATP loss during H2O2-induced oxidative stress, whereas various freeradical scavengers and metal chelators afforded no significant ATP preservation. Exogenously-supplied catabolic substrates and glycolytic or tricarboxylic acidcycle intermediates did not ameliorate the observed ATP and phosphocreatine depletion, suggesting that cardiomyocyte de-energization during H2O2-induced oxidative stress reflected defects in substrate utilization/energy conservation. Compromise of cardiomyocyte nucleotide and phosphocreatine pools during H2O2-induced oxidative stress was completely dissociated from membrane peroxidative damage and maintenance of cell integrity. Cardiomyocyte de-energization in response to H2O2 overload may constitute a distinct nonperoxidative mode of injury by which cardiomyocyte energy balance could be chronically compromised in the post-ischemic heart. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Oxidative stress is highly damaging to cellular macromolecules and is also considered a main cause of the loss and impairment of neurons in several neurodegenerative disorders. Recent reports indicate that farnesene (FNS), an acyclic sesquiterpene, has antioxidant properties. However, little is known about the effects of FNS on oxidative stress-induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of different FNS isomers (α-FNS and β-FNS) and their mixture (Mix-FNS) in H2O2-induced toxicity in newborn rat cerebral cortex cell cultures for the first time. For this aim, both MTT and lactate dehydrogenase assays were carried out to evaluate cell viability. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to assess oxidative alterations. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels in vitro, the comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (comet assay) increased in the group treated with H2O2 alone. But pretreatment of FNS suppressed the cytotoxicity, genotoxicity and oxidative stress, which were increased by H2O2 in clear type of isomers and applied concentration-dependent manners. The order of antioxidant effectiveness for modulating H2O2-induced oxidative stress-based neurotoxicity and genotoxicity is as β-FNS > Mix-FNS > α-FNS.  相似文献   

20.
Objectives: This study was designed to compare the levels of copper/zinc superoxide dismutase (Cu/Zn SOD), peroxidase (POx) and glutathione peroxidase (GSH‐Px) in saliva of smokers and those in saliva of non‐smokers. Methods: Unstimulated saliva samples were collected from 88 elderly males (65 years old or over) who visited a private dental clinic. Forty‐four subjects were current smokers (more than 20 cigarettes daily for at least 30 years) and 44 were non‐smokers. The levels of salivary thiocyanate, Cu/Zn SOD, GSH‐Px, and POx activity were measured using standard procedures. Results: The mean levels of salivary thiocyanate (SCN?) and SOD were significantly higher (p < 0.01) in the smoking group than in the non‐smoking group, whereas the specific activity levels of POx and GSH‐Px were significantly higher (p < 0.05) in the non‐smoking group than in the smoking group. Significant correlation coefficients were found between the levels of SCN? and SOD (r = 0.37, p < 0.001). In the non‐smoking group, a significant positive association was found between specific activity of POx and age (r = 0.33, p < 0.05). Conclusion: Measurement of SCN? and Cu/Zn SOD in human saliva might be useful for estimating the level of oxidative stress caused by cigarette smoke. Despite increased H2O2 level as a defense system induced by SOD, detoxification of H2O2 might be deteriorated in the oral cavity of elderly smokers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号