首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a recent study, we reported that in bovine brain extract, glycogen synthase kinase-3beta and tau are parts of an approximately 400-500 kDa microtubule-associated tau phosphorylation complex (Sun, W., Qureshi, H. Y., Cafferty, P. W., Sobue, K., Agarwal-Mawal, A., Neufield, K. D., and Paudel, H. K. (2002) J. Biol. Chem. 277, 11933-11940). In this study, we find that when purified brain microtubules are subjected to Superose 12 gel filtration column chromatography, the dimeric scaffold protein 14-3-3 zeta co-elutes with the tau phosphorylation complex components tau and GSK3 beta. From gel filtration fractions containing the tau phosphorylation complex, 14-3-3 zeta, GSK3 beta, and tau co-immunoprecipitate with each other. From extracts of bovine brain, COS-7 cells, and HEK-293 cells transfected with GSK3 beta, 14-3-3 zeta co-precipitates with GSK3 beta, indicating that GSK3 beta binds to 14-3-3 zeta. From HEK-293 cells transfected with tau, GSK3 beta, and 14-3-3 zeta in different combinations, tau co-immunoprecipitates with GSK3 beta only in the presence of 14-3-3 zeta. In vitro, approximately 10-fold more tau binds to GSK3 beta in the presence of than in the absence of 14-3-3 zeta. In transfected HEK-293 cells, 14-3-3 zeta stimulates GSK3 beta-catalyzed tau phosphorylation in a dose-dependent manner. These data indicate that in brain, the 14-3-3 zeta dimer simultaneously binds and bridges tau and GSK3 beta and stimulates GSK3 beta-catalyzed tau phosphorylation.  相似文献   

2.
Li T  Hawkes C  Qureshi HY  Kar S  Paudel HK 《Biochemistry》2006,45(10):3134-3145
In the preceding paper, we showed that GSK3beta phosphorylates tau at S(202), T(231), S(396), and S(400) in vivo. Phosphorylation of S(202) occurs without priming. Phosphorylation of T(231), on the other hand, requires priming phosphorylation of S(235). Similarly, priming phosphorylation of S(404) is essential for the sequential phosphorylation of S(400) and S(396) by GSK3beta. The priming kinase that phosphorylates tau at S(235) and S(404) in the brain is not known. In this study, we find that in HEK-293 cells cotransfected with tau, GSK3beta, and Cdk5, Cdk5 phosphorylates tau at S(202), S(235), and S(404). S(235) phosphorylation enhances GSK3beta-catalyzed T(231) phosphorylation. Similarly, Cdk5 by phosphorylating S(404) stimulates phosphorylation of S(400) and S(396) by GSK3beta. These data indicate that Cdk5 primes tau for GSK3beta in intact cells. To evaluate if Cdk5 primes tau for GSK3beta in mammalian brain, we examined localizations of Cdk5, tau, and GSK3beta in rat brain. We also analyzed the interaction of Cdk5 with tau and GSK3beta in brain microtubules. We found that Cdk5, GSK3beta, and tau are virtually colocalized in rat brain cortex. When bovine brain microtubules are analyzed by FPLC gel filtration, Cdk5, GSK3beta, and tau coelute within an approximately 450 kDa complex. From the fractions containing the approximately 450 kDa complex, tau, Cdk5, and GSK3beta co-immunoprecipitate with each other. In HEK-293 cells transfected with tau, Cdk5, and GSK3beta in different combinations, tau binds to Cdk5 in a manner independent of GSK3beta and to GSK3beta in a manner independent of Cdk5. However, Cdk5 and GSK3beta bind to each other only in the presence of tau, suggesting that tau connects Cdk5 and GSK3beta. Our results suggest that in the brain, tau, Cdk5, and GSK3beta are components of an approximately 450 kDa complex. Within the complex, Cdk5 phosphorylates tau at S(235) and primes it for phosphorylation of T(231) by GSK3beta. Similarly, Cdk5 by phosphorylating tau at S(404) primes tau for a sequential phosphorylation of S(400) and S(396) by GSK3beta.  相似文献   

3.
Li T  Paudel HK 《Biochemistry》2006,45(10):3125-3133
Phosphorylation of tau on S(396) was suggested to be a key step in the development of neurofibrillary pathology in Alzheimer's disease brain [Bramblett, G. T., Goedert, M., Jacks, R., Merrick, S. E., Trojanowski, J. Q., and Lee, V. M.-Y. (1993) Neuron 10, 1089-1099]. GSK3beta phosphorylates Ser(396) of tau in the brain by a mechanism which is not clear. In this study, when HEK-293 cells were cotransfected with tau and GSK3beta, GSK3beta co-immunoprecipitated with tau and phosphorylated tau on S(202), T(231), S(396), and S(400) but not on S(262), S(235), and S(404). Blocking phosphorylation on T(231), S(235), S(396), S(400), or S(404) did not prevent the subsequent phosphorylation on S(202) by GSK3beta. These data suggest that GSK3beta directly phosphorylates tau on S(202) (without requiring prephosphorylation). However, preventing phosphorylation on S(235), S(400), and S(404) prevented GSK3beta-dependent phosphorylation of T(231), S(396), and S(400), respectively. This indicates that phosphorylation of T(231), S(396), and S(400) by GSK3beta depends on a previous phosphorylation of S(235), S(400), and S(404), respectively. To examine S(396) phosphorylation, we analyzed phosphorylation of S(396), S(400), and S(404). Blocking phosphorylation of S(404) prevented the subsequent GSK3beta-dependent phosphorylation of both S(400) and S(396). When phosphorylation of S(404) was allowed but S(400) blocked, GSK3beta failed to phosphorylate S(396). Thus, GSK3beta phosphorylates S(396) by a two-step mechanism. In the first step, GSK3beta phosphorylates S(400) of previously S(404)-phosphorylated tau. This event primes tau for second-step phosphorylation of S(396) by GSK3beta. We conclude that GSK3beta phosphorylates tau directly at S(202) but requires the previous phosphorylation on S(235) to phosphorylate T(231). Phosphorylation of S(396), on the other hand, occurs sequentially. Once a priming kinase phosphorylates S(404), GSK3beta sequentially phosphorylates S(400) and then S(396).  相似文献   

4.
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule interactions have not been fully elucidated. GSK3beta phosphorylates both primed and unprimed sites on tau, but only primed phosphorylation events significantly decrease the ability of tau to bind microtubules. The focus of the present study is on determining the importance of the GSK3beta-mediated phosphorylation of a specific primed site, Thr231, in regulating tau's function. Pre-phosphorylation of Ser235 primes tau for phosphorylation by GSK3beta at Thr231. Phosphorylation by GSK3beta of wild-type tau or tau with Ser235 mutated to Ala decreases tau-microtubule interactions. However, when Thr231 alone or Thr231 and Ser235 in tau were mutated to Ala, phosphorylation by GSK3beta did not decrease the association of tau with the cytoskeleton. Further, T231A tau was still able to efficiently bind microtubules after phosphorylation by GSK3beta. Expression of each tau construct alone increased tubulin acetylation, a marker of microtubule stability. However, when cells were cotransfected with wild-type tau and GSK3beta, the level of tubulin acetylation was decreased to vector-transfected levels. In contrast, coexpression of GSK3beta with mutated tau (T231A/S235A) did not significantly decrease the levels of acetylated tubulin. These results strongly indicate that phosphorylation of Thr231 in tau by GSK3beta plays a critical role in regulating tau's ability to bind and stabilize microtubules.  相似文献   

5.
14-3-3zeta is an effector of tau protein phosphorylation   总被引:7,自引:0,他引:7  
Neurofibrillary tangles associated with Alzheimer's disease are composed mainly of paired helical filaments that are formed by the aggregation of abnormally phosphorylated microtubule-associated protein tau. 14-3-3, a highly conserved protein family that exists as seven isoforms and regulates diverse cellular processes is present in neurofibrillary tangles (Layfield, R., Fergusson, J., Aitken, A., Lowe, J., Landon, M., Mayer, R. J. (1996) Neurosci. Lett. 209, 57-60). The role of 14-3-3 in Alzheimer's disease pathogenesis is not known. In this study, we found that the 14-3-3zeta isoform is associated with tau in brain extract and profoundly stimulates cAMP-dependent protein kinase catalyzed in vitro phosphorylation on Ser(262)/Ser(356) located within the microtubule-binding region of tau. 14-3-3zeta binds to both phosphorylated and nonphosphorylated tau, and the binding site is located within the microtubule-binding region of tau. From brain extract, 14-3-3zeta co-purifies with microtubules, and tubulin blocks 14-3-3zeta-tau binding. Among four 14-3-3 isoforms tested, beta and zeta but not gamma and epsilon associate with tau. Our data suggest that 14-3-3zeta is a tau protein effector and may be involved in the abnormal tau phosphorylation occurring during Alzheimer's disease ontogeny.  相似文献   

6.
Liao W  Wang S  Han C  Zhang Y 《The FEBS journal》2005,272(8):1845-1854
14-3-3 proteins are dimeric phophoserine-binding molecules that participate in important cellular processes such as cell proliferation, cell-cycle control and the stress response. In this work, we report that several isoforms of 14-3-3s are expressed in neonatal rat cardiomyocytes. To understand their function, we utilized a general 14-3-3 peptide inhibitor, R18, to disrupt 14-3-3 functions in cardiomyocytes. Cardiomyocytes infected with adenovirus-expressing YFP-R18 (AdR18) exhibited markedly increased protein synthesis and atrial natriuretic peptide production and potentiated the responses to norepinephrine stimulation. This response was blocked by the pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor. Consistent with a role of PI3K in the R18 effect, R18 induced phosphorylation of a protein cloned from the vakt oncogene of retrovirus AKT8 (Akt - also called protein kinase B, PKB) at Ser473 and glycogen synthase 3beta (GSK3beta) at Ser9, but not extracellular signal-regulated kinase 1/2 (ERK1/2). AdR18-induced PKB and GSK3beta phosphorylation was completely blocked by LY294002. In addition, a member of the nuclear factor of activated T cells (NFAT) family, NFAT3, was converted into faster mobility forms and translocated into the nucleus upon the treatment of AdR18. These results suggest that 14-3-3s inhibits cardiomyocytes hypertrophy through regulation of the PI3K/PKB/GSK3beta and NFAT pathway.  相似文献   

7.
Glycogen synthase kinase 3 (GSK3) is a widely expressed Ser/Thr protein kinase that phosphorylates numerous substrates. This large number of substrates requires precise and specific regulation of GSK3 activity, which is achieved by a combination of phosphorylation, localization, and interactions with GSK3-binding proteins. Members of the Wnt canonical pathway have been shown to influence GSK3 activity. Through a yeast two-hybrid screen, we identified the Wnt canonical pathway co-receptor protein low density lipoprotein receptor-related protein 6 (LRP6) as a GSK3-binding protein. The interaction between the C terminus of LRP6 and GSK3 was also confirmed by in vitro GST pull-down assays and in situ coimmunoprecipitation assays. In vitro assays using immunoprecipitated proteins demonstrated that the C terminus of LRP6 significantly attenuated the activity of GSK3beta. In situ, LRP6 significantly decreased GSK3beta-mediated phosphorylation of tau at both primed and unprimed sites. Finally, it was also demonstrated that GSK3beta phosphorylates the PPP(S/T)P motifs in the C terminus of LRP6. This is the first identification of a direct interaction between LRP6 and GSK3, which results in an attenuation of GSK3 activity.  相似文献   

8.
The microtubule-associated protein, tau, is involved in numerous neuronal processes such as vesicle transport, microtubule-plasma membrane interaction and the intracellular localization of proteins. Tau is known to be phosphorylated by several kinases such as mitogen activated protein kinase, microtubule affinity regulating kinase, and protein kinase A. We found a putative serum- and glucocorticoid-induced protein kinase 1 (SGK1) phosphorylation site within the 207GSRSRTPSLP216 tau amino acid sequence. We report here that SGK1 phosphorylates Ser214 of Tau. Using a pull-down assay, we found that 14-3-3q interacts with SGK1 and tau to form a ternary protein complex that leads to phosphorylation of tau. 14-3-3 and phosphorylated tau were mainly co-localized in the nucleus of COS-1 cells. These results demonstrate that 14-3-3 scaffolds tau with SGK1 to facilitate the phosphorylation of tau at Ser214 and to regulate its subcellular localization.  相似文献   

9.
Glycogen synthase kinase‐3 beta (GSK‐3β) dysfunction may play an essential role in the pathogenesis of psychiatric, metabolic, neurodegenerative diseases, in which oxidative stress exists concurrently. Some studies have shown that GSK‐3β activity is up‐regulated under oxidative stress. This study evaluated how oxidative stress regulates GSK‐3β activity in human embryonic kidney 293 (HEK293)/Tau cells treated with hydrogen peroxide (H2O2). Here, we show that H2O2 induced an obvious increase of GSK‐3β activity. Surprisingly, H2O2 dramatically increased phosphorylation of GSK‐3β at Ser9, an inactive form of GSK‐3β,while there were no changes of phosphorylation of GSK‐3β at Tyr216. Moreover, H2O2 led to a transient [Ca2+]i elevation, and simultaneously increased the truncation of GSK‐3β into two fragments of 40 kDa and 30 kDa, whereas inhibition of calpain decreased the truncation and recovered the activity of GSK‐3β. Furthermore, tau was hyperphosphorylated at Ser396, Ser404, and Thr231, three most common GSK‐3β targeted sites after 100 μM H2O2 administration in HEK293/Tau cells, whereas inhibition of calpain blocked the tau phosphorylation. In addition, we found that there were no obvious changes of Cyclin‐dependent kinase 5 (CDK5) expression (responsible for tau phosphorylation) and of p35 cleavage, the regulatory subunit of CDK5 in H2O2‐treated HEK293/Tau cells. In conclusion, Ca2+‐dependent calpain activation leads to GSK‐3β truncation, which counteracts the inhibitory effect of Ser9 phosphorylation, up‐regulates GSK‐3β activity, and phosphorylates tau in H2O2‐treated HEK293/Tau cells.  相似文献   

10.
In Alzheimer's disease, microtubule-associated protein tau is hyperphosphorylated by an unknown mechanism and is aggregated into paired helical filaments. Hyperphosphorylation causes loss of tau function, microtubule instability, and neurodegeneration. Glycogen synthase kinase-3beta (GSK3beta) has been implicated in the phosphorylation of tau in normal and Alzheimer's disease brain. The molecular mechanism of GSK3beta-tau interaction has not been clarified. In this study, we find that when microtubules are disassembled, microtubule-associated GSK3beta dissociates from microtubules. From a gel filtration column, the dissociated GSK3beta elutes as an approximately 400-kDa complex. When fractions containing the approximately 400-kDa complex are chromatographed through an anti-GSK3beta immunoaffinity column, tau co-elutes with GSK3beta. From fractions containing the approximately 400-kDa complex, both tau and GSK3beta co-immunoprecipitate with each other. GSK3beta binds to nonphosphorylated tau, and the GSK3beta-binding region is located within the N-terminal projection domain of tau. In vitro, GSK3beta associates with microtubules only in the presence of tau. From brain extract, approximately 6-fold more GSK3beta co-immunoprecipitates with tau than GSK3alpha. These data indicate that, in brain, GSK3beta is bound to tau within a approximately 400-kDa microtubule-associated complex, and GSK3beta associates with microtubules via tau.  相似文献   

11.
Glycogen synthase kinase 3beta (GSK3beta) is an essential protein kinase that regulates numerous functions within the cell. One critically important substrate of GSK3beta is the microtubule-associated protein tau. Phosphorylation of tau by GSK3beta decreases tau-microtubule interactions. In addition to phosphorylating tau, GSK3beta is a downstream regulator of the wnt signaling pathway, which maintains the levels of beta-catenin. Axin plays a central role in regulating beta-catenin levels by bringing together GSK3beta and beta-catenin and facilitating the phosphorylation of beta-catenin, targeting it for ubiquitination and degradation by the proteasome. Although axin clearly facilitates the phosphorylation of beta-catenin, its effects on the phosphorylation of other GSK3beta substrates are unclear. Therefore in this study the effects of axin on GSK3beta-mediated tau phosphorylation were examined. The results clearly demonstrate that axin is a negative regulator of tau phosphorylation by GSK3beta. This negative regulation of GSK3beta-mediated tau phosphorylation is due to the fact that axin efficiently binds GSK3beta but not tau and thus sequesters GSK3beta away from tau, as an axin mutant that does not bind GSK3beta did not inhibit tau phosphorylation by GSK3beta. This is the first demonstration that axin negatively affects the phosphorylation of a GSK3beta substrate, and provides a novel mechanism by which tau phosphorylation and function can be regulated within the cell.  相似文献   

12.
Glycogen synthase kinase 3beta (GSK3beta) phosphorylates substrates, including the microtubule-associated protein tau, at both primed and unprimed epitopes. GSK3beta phosphorylation of tau negatively regulates tau-microtubule interactions; however the differential effects of phosphorylation at primed and unprimed epitopes on tau is unknown. To examine the phosphorylation of tau at primed and unprimed epitopes and how this impacts tau function, the R96A mutant of GSK3beta was used, a mutation that prevents phosphorylation of substrates at primed sites. Both GSK3beta and GSK3beta-R96A phosphorylated tau efficiently in situ. However, expression of GSK3beta-R96A resulted in significantly less phosphorylation of tau at primed sites compared with GSK3beta. Conversely, GSK3beta-R96A phosphorylated unprimed tau sites to a significantly greater extent than GSK3beta. Prephosphorylating tau with cdk5/p25 impaired the ability of GSK3beta-R96A to phosphorylate tau, whereas GSK3beta-R96A phosphorylated recombinant tau to a significantly greater extent than GSK3beta. Moreover, the amount of tau associated with microtubules was reduced by overexpression of GSK3beta but only when tau was phosphorylated at primed sites, as phosphorylation of tau by GSK3beta-R96A did not negatively regulate the association of tau with microtubules. These results demonstrate that GSK3beta-mediated phosphorylation of tau at primed sites plays a more significant role in regulating the interaction of tau with microtubules than phosphorylation at unprimed epitopes.  相似文献   

13.
The potential role of 4-hydroxynonenal (HNE), a major product of membrane lipid peroxidation, in regulating glycogen synthase kinase-3beta (GSK3beta) activity was examined in human neuroblastoma IMR-32 cells. The inhibition of GSK3beta activity by HNE was observed by in vitro kinase assays with two substrates, the synthetic glycogen synthase peptide-2 and the human recombinant tau. GSK3beta activity is regulated by Ser9 (inhibitory) and Tyr216 (stimulatory) phosphorylation. By using specific activity-dependent phospho-antibodies, immunoblot analysis revealed that HNE induces an increase in phosphorylation of GSK3beta in Ser9, enhancing basal phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase 2 (ERK2) signalling pathways. Ser9-GSK3beta phosphorylation induced by HNE was abolished by treatment with LY294002 or U0126, two inhibitors of PI3K/AKT and ERK pathways, respectively. These experiments provide evidence for a crucial role of the PI3K/AKT and ERK2 pathways as intracellular targets of HNE that mediate the inhibition of GSK3beta activity in regulating cellular response to HNE in viable cells under conditions in which membrane lipid peroxidation occurs. These data support a key role for GSK3beta as a mediator of the signalling pathways activated by oxidative stress, and therefore it may be included among the redox-sensitive enzymes.  相似文献   

14.
To identify the intracellular signaling pathways that mediate the pro-survival activity of NMDA receptors (NMDARs), we studied effects of exogenous NMDA on cultured rat cortical and hippocampal neurons that were treated with a phosphatidylinositol-3-kinase (PI3K) inhibitor, LY294002. NMDA at 5 or 10 microm protected against LY294002-induced apoptosis, suggesting NMDAR-mediated activation of a survival signaling pathway that is PI3K-independent. NR2B-specific NMDAR blockers antagonized anti-apoptotic effects of NMDA, indicating a critical role of NR2B NMDARs in the neuroprotection. NMDA at 10 microm suppressed LY294002-induced activation of a pro-apoptotic kinase, glycogen synthase kinase 3beta (GSK3beta). GSK3beta activation by LY294002 was associated with decreased levels of inhibitory GSK3beta phosphorylation at the Ser9 residue. However, NMDA did not prevent the LY294002-mediated decline of phospho-Ser9 levels. In addition, NMDA inhibited cortical neuron apoptosis induced by the overexpression of either wild type (wt) or Ser9Ala mutant form of GSK3beta, suggesting that NMDA suppressed GSK3beta in a Ser9-independent manner. Finally, inhibition of NR2B NMDARs reduced the NMDA protection against overexpression of GSK3betawt. These data indicate that moderate stimulation of NR2B NMDAR protects against inhibition of PI3K by a Ser9-independent inhibition of the pro-apoptotic activity of GSK3beta. Hence, the activation of NR2B and the Ser9-independent inhibition of GSK3beta are two newly identified elements of the signaling network that mediates the pro-survival effects of NMDA.  相似文献   

15.
The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3alpha and Ser9 of GSK3beta. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3beta, but not GSK3alpha. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels.  相似文献   

16.
Ikeda Y  Ishiguro K  Fujita SC 《FEBS letters》2007,581(5):891-897
Tau is reversibly hyperphosphorylated in the mouse brain by starvation or cold water swimming. Here, we report tau phosphorylation in the hippocampus of normal mouse after ether anesthesia, known to trigger typical stress reactions. Robust phosphorylation of tau was observed immediately and 10min after ether vapor exposure at Ser202/Thr205 and Thr231/Ser235, sites typically phosphorylated in Alzheimer brains. The phosphorylation levels returned to baseline by 1h. The most conspicuous and consistent change in the protein kinases studied was the inactivating phosphorylation of Ser9 of TPKI/GSK3beta in close correspondence with tau phosphorylation. These findings show that tau phosphorylation is a rapid physiological process integral to stress response system, and suggest involvement therein of TPKI/GSK3beta.  相似文献   

17.
p90 ribosomal S6 kinase 1 (RSK1) is a serine/threonine kinase that is activated by extracellular signal-related kinases 1/2 and phosphoinositide-dependent protein kinase 1 upon mitogen stimulation. Under basal conditions, RSK1 is located in the cytosol and upon stimulation, RSK1 translocates to the plasma membrane where it is fully activated. The ability of RSK1 to bind the adapter protein 14-3-3beta was investigated because RSK1 contains several putative 14-3-3-binding motifs. We demonstrate that RSK1 specifically and directly binds 14-3-3beta. This interaction was dependent on phosphorylation of serine 154 within the motif RLSKEV of RSK1. Binding of RSK1 to 14-3-3beta was maximal under basal conditions and decreased significantly upon mitogen stimulation. After 5 min of serum stimulation, a portion of 14-3-3beta and RSK1 translocated to the membrane fraction, and immunofluorescence studies demonstrated colocalization of RSK1 and 14-3-3beta at the plasma membrane in vivo. Incubation of recombinant RSK1 with 14-3-3beta decreased RSK1 kinase activity by approximately 50%. Mutation of RSK1 serine 154 increased both basal and serum-stimulated RSK activity. In addition, the epidermal growth factor response of RSK1S154A was enhanced compared with wild type RSK. The amount of RSK1S154A was significantly increased in the membrane fraction under basal conditions. Increased phosphorylation of two sites essential for RSK1 kinase activity (Ser(380) and Ser(363)) in RSK1S154A compared with RSK1 wild type, demonstrated that 14-3-3 interferes with RSK1 phosphorylation. These data suggest that 14-3-3beta binding negatively regulates RSK1 activity to maintain signal specificity and that association/dissociation of the 14-3-3beta-RSK1 complex is likely to be important for mitogen-mediated RSK1 activation.  相似文献   

18.
Emerging evidence shows that glycogen synthase kinase 3beta (GSK3beta) is involved in mitotic division and that inhibiting of GSK3beta kinase activity causes defects in spindle microtubule length and chromosome alignment. However, the purpose of GSK3beta involvement in spindle microtubule assembly and accurate chromosome segregation remains obscure. Here, we report that GSK3beta interacts with the spindle-associated protein Astrin both in vitro and in vivo. Additionally, Astrin acts as a substrate for GSK3beta and is phosphorylated at Thr-111, Thr-937 ((S/T)P motif) and Ser-974/Thr-978 ((S/T)XXX(S/T)-p motif; p is a phosphorylatable residue). Inhibition of GSK3beta impairs spindle and kinetochore accumulation of Astrin and spindle formation at mitosis, suggesting that Astrin association with the spindle microtubule and kinetochore may be dependent on phosphorylation by GSK3beta. Conversely, depletion of Astrin by small interfering RNA has no detectable influence on the localization of GSK3beta. Interestingly, in vitro assays demonstrated that Astrin enhances GSK3beta-mediated phosphorylation of other substrates. Moreover, we showed that coexpression of Astrin and GSK3beta differentially increases GSK3beta-mediated Tau phosphorylation on an unprimed site. Collectively, these data indicate that GSK3beta interacts with and phosphorylates the spindle-associated protein Astrin, resulting in targeting Astrin to the spindle microtubules and kinetochores. In turn, the GSK3beta-Astrin complex may also facilitate further physiological and pathological phosphorylation.  相似文献   

19.
Connexin43 (Cx43) is a membrane-spanning protein that forms channels that bridge the gap between adjacent cells and this allows for the intercellular exchange of information. Cx43 is regulated by phosphorylation and by interacting proteins. “Mode-1” interaction with 14-3-3 requires phosphorylation of Ser373 on Cx43 (Park et al. 2006). Akt phosphorylates and targets a number of proteins to interactions with 14-3-3. Here we demonstrate that Akt phosphorylates Cx43 on Ser373 and Ser369; antibodies recognizing Akt-phosphorylated sites or phospho-Ser “mode-1” 14-3-3-binding sites recognize a protein from EGF-treated cells that migrates as Cx43, and GST-14-3-3 binds to Cx43 phosphorylated endogenously in EGF-treated cells. Confocal microscopy supports the co-localization of Cx43 with Akt and with 14-3-3 at the outer edges of gap junctional plaques. These data suggest that Akt could target Cx43 to an interaction with 14-3-3 that may play a role in the forward trafficking of Cx43 multimers and/or their incorporation into existing gap junctional plaques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号