首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Cooperation of sonic hedgehog enhancers in midline expression   总被引:2,自引:0,他引:2  
In zebrafish, as in other vertebrates, the secreted signalling molecule Sonic hedgehog (Shh) is expressed in organiser regions such as the embryonic midline and the zona limitans intrathalamica (zli). To investigate the regulatory mechanisms underlying the pattern of shh expression, we carried out a systematic analysis of the intronic regulatory sequences of zebrafish shh using stable transgenesis. Deletion analysis identified the modules responsible for expression in the embryonic shield, the hypothalamus and the zli and confirmed the activities of previously identified notochord and floor plate enhancers. We detected a strong synergism between regulatory regions. The degree of synergy varied over time in the hypothalamus suggesting different mechanisms for initiation and maintenance of expression. Our data show that the pattern of shh expression in the embryonic central nervous system involves an intricate crosstalk of at least 4 different regulatory regions. When compared to the enhancer activities of the mouse Shh gene, we observed a remarkable divergence of function of structurally conserved enhancer sequences. The activating region ar-C (61% identical to SFPE2 in mouse Shh), for example, mediates floor plate expression in the mouse embryo while it directs expression in the forebrain and the notochord and only weakly in the floor plate in the zebrafish embryo. This raises doubts on the predictive power of phylogenetic footprinting and indicates a stunning divergence of function of structurally conserved regulatory modules during vertebrate evolution.  相似文献   

2.
The secreted molecule Sonic hedgehog (Shh) is crucial for floor plate and ventral brain development in amniote embryos. In zebrafish, mutations in cyclops (cyc), a gene that encodes a distinct signal related to the TGF(beta) family member Nodal, result in neural tube defects similar to those of shh null mice. cyc mutant embryos display cyclopia and lack floor plate and ventral brain regions, suggesting a role for Cyc in specification of these structures. cyc mutants express shh in the notochord but lack expression of shh in the ventral brain. Here we show that Cyc signalling can act directly on shh expression in neural tissue. Modulation of the Cyc signalling pathway by constitutive activation or inhibition of Smad2 leads to altered shh expression in zebrafish embryos. Ectopic activation of the shh promoter occurs in response to expression of Cyc signal transducers in the chick neural tube. Furthermore an enhancer of the shh gene, which controls ventral neural tube expression, is responsive to Cyc signal transducers. Our data imply that the Nodal related signal Cyc induces shh expression in the ventral neural tube. Based on the differential responsiveness of shh and other neural tube specific genes to Hedgehog and Cyc signalling, a two-step model for the establishment of the ventral midline of the CNS is proposed.  相似文献   

3.
4.
5.
6.
The floor plate is a morphologically distinct structure of epithelial cells situated along the midline of the ventral spinal cord in vertebrates. It is a source of guidance molecules directing the growth of axons along and across the midline of the neural tube. In the zebrafish, the floor plate is about three cells wide and composed of cuboidal cells. Two cell populations can be distinguished by the expression patterns of several marker genes, including sonic hedgehog (shh) and the fork head-domain gene fkd4: a single row of medial floor plate (MFP) cells, expressing both shh and fkd4, is flanked by rows of lateral floor plate (LFP) cells that express fkd4 but not shh. Systematic mutant searches in zebrafish embryos have identified a number of genes, mutations in which visibly reduce the floor plate. In these mutants either the MFP or the LFP cells are absent, as revealed by the analysis of the shh and fkd4 expression patterns. MFP cells are absent, but LFP cells are present, in mutants of cyclops, one-eyed pinhead, and schmalspur, whose development of midline structures is affected. LFP cells are absent, but MFP cells are present, in mutants of four genes, sonic you, you, you-too, and chameleon, collectively called the you-type genes. This group of mutants also shows defects in patterning of the paraxial mesoderm, causing U- instead of V-shaped somites. One of the you-type genes, sonic you, was recently shown to encode the zebrafish Shh protein, suggesting that the you-type genes encode components of the Shh signaling pathway. It has been shown previously that in the zebrafish shh is required for the induction of LFP cells, but not for the development of MFP cells. This conclusion is supported by the finding that injection of shh RNA causes an increase in the number of LFP, but not MFP cells. Embryos mutant for iguana, detour, and umleitung share the lack of LFP cells with you-type mutants while somite patterning is not severely affected. In mutants that fail to develop a notochord, MFP cells may be present, but are always surrounded by LFP cells. These data indicate that shh, expressed in the notochord and/or the MFP cells, induces the formation of LFP cells. In embryos doubly mutant for cyclops (cyc) and sonic you (syu) both LFP and MFP cells are deleted. The number of primary motor neurons is strongly reduced in cyc;syu double mutants, while almost normal in single mutants, suggesting that the two different pathways have overlapping functions in the induction of primary motor neurons.  相似文献   

7.
The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic overexpression experiments, we show that, similar to the requirements for prechordal plate mesendoderm fates, uninterrupted and high levels of Cyclops signalling are required for induction and specification of a complete ventral neural tube.  相似文献   

8.
9.
10.
11.
12.
In vertebrate embryos, positioning of the boundary between the midbrain and hindbrain (MHB) and subsequent isthmus formation are dependent upon the interaction between the Otx2 and Gbx genes. In zebrafish, sequential expression of gbx1 and gbx2 in the anterior hindbrain contributes to this process, whereas in mouse embryos, a single Gbx gene (Gbx2) is responsible for MHB development. In the present study, to investigate the regulatory mechanism of gbx2 in the MHB/isthmic region of zebrafish embryos, we cloned the gene and showed that its organization is conserved among different vertebrates. Promoter analyses revealed three enhancers that direct reporter gene expression after the end of epiboly in the anterior-most hindbrain, which is a feature of the zebrafish gbx2 gene. One of the enhancers is located upstream of gbx2 (AMH1), while the other two enhancers are located downstream of gbx2 (AMH2 and AMH3). Detailed analysis of the AMH1 enhancer showed that it directs expression in the rhombomere 1 (r1) region and the dorsal thalamus, as has been shown for gbx2, whereas no expression was induced by the AMH1 enhancer in other embryonic regions in which gbx2 is expressed. The AMH1 enhancer is composed of multiple regulatory subregions that share the same spatial specificity. The most active of the regulatory subregions is a 291-bp region that contains at least two Pax2-binding sites, both of which are necessary for the function of the main component (PB1-A region) of the AMH1 enhancer. In accordance with these results, enhancer activity in the PB1-A region, as well as gbx2 expression in r1, was missing in no isthmus mutant embryos that lacked functional pax2a. In addition, we identified an upstream conserved sequence of 227bp that suppresses the enhancer activity of AMH1. Taken together, these findings suggest that gbx2 expression during the somitogenesis stage in zebrafish is regulated by a complex mechanism involving Pax2 as well as activators and suppressors in the regions flanking the gene.  相似文献   

13.
14.
BACKGROUND: To estimate the rate of malformations observed during early human development, a series of 38,913 first-trimester abortions were studied. Neural tube defects (NTD) were found in 57 cases. METHODS: A histological study of serial sections performed in 25 embryos revealed a spectrum of axial structure abnormalities. Expression of the SHH gene was studied by in situ hybridization in one case of CRS and in two cases of SB. RESULTS: A cervical notochord duplication was always found in craniorachischisis (CRS, n = 8), but not in spina bifida (SB, n = 10) or diplomyelia (split cord malformation, n = 3). In the embryo with CRS, expression of SHH was found in both domains, corresponding to the duplicated part of the notochord, whereas a single signal was observed in the nonduplicated part. This expression was associated at the cervical level of the open neural tube with a broad SHH expression domain and with two or even three domains in its lumbar region, suggesting multiple functional floor plates. Similarly, in two embryos with SB, two domains of SHH expression were found in the ventral neural tube. CONCLUSIONS: Our findings suggest that notochord splitting in the cervical region might be involved in the pathogenesis of CRS. Interestingly, similar notochord abnormality and altered expression of the shh gene are observed in Lp mice with NTD. This suggests that the Lp gene could be a candidate gene for human CRS. Further studies are needed to establish the primary event responsible for the notochord splitting and for the abnormal expression of the SHH gene in the floor plate in embryos with CRS and SB.  相似文献   

15.
The Hoxc8 early enhancer is a 200 bp region that controls the early phase of Hoxc8 expression during mouse embryonic development. This enhancer defines the domain of Hoxc8 expression in the neural tube and mesoderm of the posterior regions of the developing embryo. Five distinct cis-acting elements, A-E, were previously shown to govern early phase Hoxc8 expression. Significant divergence between mammalian and fish Hoxc8 early enhancer sequences and activities suggested additional cis-acting elements. Here we describe four additional cis-acting elements (F-I) within the 200 bp Hoxc8 early enhancer region identified by comparative regulatory analysis and transgene-mutation studies. These elements affect posterior neural tube and mesoderm expression of the reporter gene, either singly or in combination. Surprisingly, these new elements are missing from the zebrafish and Fugu Hoxc8 early enhancer sequences. Considering that fish enhancers direct robust reporter expression in transgenic mouse embryos, it is tempting to postulate that fish and mammalian Hoxc8 early enhancers utilize different sets of elements to direct Hoxc8 early expression. These observations reveal a remarkable plasticity in the Hoxc8 early enhancer, suggesting different modes of initiation and establishment of Hoxc8 expression in different species. We postulate that extensive restructuring and remodeling of Hox cis-regulatory regions occurring in different taxa lead to relatively different Hox expression patterns, which in turn may act as a driving force in generating diverse axial morphologies.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号