首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropomodulin (Tmod) stabilizes the actin-tropomyosin filament by capping the slow-growing end (P-end). The N- and C-terminal halves play distinct roles; the N-terminal half interacts with the N-terminal region of tropomyosin, whereas the C-terminal half interacts with actin. Our previous study (A. Kostyukova, K. Maeda, E. Yamauchi, I. Krieger, and Y. Maéda Y., 2000, Eur. J. Biochem. 267:6470-6475) suggested that the two halves are also structurally distinct from each other. We have now studied the folding properties of the two halves, by circular dichroism spectroscopy and by differential scanning calorimetry of the expressed chicken E-type tropomodulin and its large fragments. The results showed that the C-terminal half represents a single, independently folded unit that melts cooperatively through a two-state transition. In contrast, the N-terminal half lacks a definite tertiary structure in solution. The binding of N11, a fragment that corresponds to the first 91 amino acids of the tropomodulin, to tropomyosin substantially stabilized the tropomyosin. This may indicate that the flexible structure of the N-terminal half of tropomodulin in solution is required for binding to tropomyosin and that the N-terminal half acquires its tertiary structure upon binding to tropomyosin.  相似文献   

2.
Tropomodulin is the unique pointed-end capping protein of the actin-tropomyosin filament. By blocking elongation and depolymerization, tropomodulin regulates the architecture and the dynamics of the filament. Here we report the crystal structure at 1.45-A resolution of the C-terminal half of tropomodulin (C20), the actin-binding moiety of tropomodulin. C20 is a leucine-rich repeat domain, and this is the first actin-associated protein with a leucine-rich repeat. Binding assays suggested that C20 also interacts with the N-terminal fragment, M1-M2-M3, of nebulin. Based on the crystal structure, we propose a model for C20 docking to the actin subunit at the pointed end. Although speculative, the model is consistent with the idea that a tropomodulin molecule competes with an actin subunit for a pointed end. The model also suggests that interactions with tropomyosin, actin, and nebulin are all possible sources of influences on the dynamic properties of pointed-end capping by tropomodulin.  相似文献   

3.
Kostyukova AS  Choy A  Rapp BA 《Biochemistry》2006,45(39):12068-12075
Tropomodulin, a tropomyosin-binding protein, caps the slow-growing (pointed) end of the actin filament regulating its dynamics. Tropomodulin, therefore, is important for determining cell morphology, cell movement, and muscle contraction. For the first time we show that one tropomodulin molecule simultaneously binds two tropomyosin molecules in a cooperative manner. On the basis of the tropomodulin solution structure and predicted secondary structure, we introduced a series of point mutations in regions important for tropomyosin binding and actin capping. Capping activity of these mutants was assayed by measuring actin polymerization using pyrene fluorescence. Using direct methods (circular dichroism and native gel electrophoresis) for detecting tropomodulin/tropomyosin binding, we localized the second tropomyosin-binding site to residues 109-144. Despite previous reports that the second binding site is for erythrocyte tropomyosin only, we found that both short nonmuscle and long muscle alpha-tropomyosins bind there as well, though with different affinities. We propose a model for actin capping where one tropomodulin molecule can bind to two tropomyosin molecules at the pointed end.  相似文献   

4.
Tropomodulin is a tropomyosin-binding protein, originally isolated from human erythrocytes. Tropomodulin is currently regarded as the sole actin pointed-end capping protein [Weber, A., Pennise, C.R., Babcock, G.G. & Fowler, V.M. (1994) J. Cell Biol. 127, 1627-1635]. This work first describes a procedure for the purification of tropomodulin from rabbit skeletal muscle. Tropomodulin almost completely inhibited filament formation of actin in the presence of tropomyosin and troponin. For the maximal inhibition of actin polymerization, approximately 0.10, 0.12 and 0.003 mol of tropomyosin, troponin and tropomodulin per mol of actin were required, respectively. Fluorescence-intensity measurements, electron-microscopy and sedimentation experiments revealed that only very short fragments and amorphous aggregates, but not filaments, were formed when actin was copolymerized with tropomyosin, troponin and tropomodulin by the addition of 50 mM KCl at pH 8.0. The effects of tropomyosin, troponin and tropomodulin were more remarkable on Ca-actin than on Mg-actin. It appears that tropomodulin caps both the pointed and barbed ends of tropomyosin- and troponin-bound actin filaments.  相似文献   

5.
Tropomodulin caps the pointed ends of actin filaments   总被引:10,自引:3,他引:7       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1627-1635
Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle thin filaments (Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 411-420). Our experiments demonstrate that tropomodulin in conjunction with tropomyosin is a pointed end capping protein: it completely blocks both elongation and depolymerization at the pointed ends of tropomyosin-containing actin filaments in concentrations stoichiometric to the concentration of filament ends (Kd < or = 1 nM). In the absence of tropomyosin, tropomodulin acts as a "leaky" cap, partially inhibiting elongation and depolymerization at the pointed filament ends (Kd for inhibition of elongation = 0.1-0.4 microM). Thus, tropomodulin can bind directly to actin at the pointed filament end. Tropomodulin also doubles the critical concentration at the pointed ends of pure actin filaments without affecting either the rate of extent of polymerization at the barbed filament ends, indicating that tropomodulin does not sequester actin monomers. Our experiments provide direct biochemical evidence that tropomodulin binds to both the terminal tropomyosin and actin molecules at the pointed filament end, and is the long sought-after pointed end capping protein. We propose that tropomodulin plays a role in maintaining the narrow length distributions of the stable, tropomyosin-containing actin filaments in striated muscle and in red blood cells.  相似文献   

6.
Tropomodulin is a human erythrocyte membrane cytoskeletal protein that binds to one end of tropomyosin molecules and inhibits tropomyosin binding to actin filaments [Fowler, V. M. (1990) J. Cell Biol. 111, 471-482]. We have characterized the interaction of erythroid and non-erythroid tropomyosins with tropomodulin by non-denaturing gel electrophoresis and by solid-phase binding assays using 125I-tropomyosin. Non-denaturing gel analysis demonstrates that all tropomodulin molecules are able to bind tropomyosin and that tropomodulin forms complexes with tropomyosin isoforms from erythrocyte, brain, platelet and skeletal muscle tissue. Scatchard analysis of binding data using tropomyosin isoforms from these tissues indicate that tropomodulin binds preferentially to erythrocyte tropomyosin. Specificity is manifested by decreases in the apparent affinity or the saturation binding capacity of tropomodulin for non-erythrocyte tropomyosins. Erythrocyte tropomyosin saturates tropomodulin at approximate stoichiometric ratios of 1:2 and 1:4 tropomyosin/tropomodulin (apparent Kd = 14 nM-1 and 5 nM-1, respectively). Brain tropomyosin saturates tropomodulin at a 1:2 ratio of tropomyosin/tropomodulin, but with a threefold lower affinity than erythrocyte tropomyosin. Platelet tropomyosin saturates tropomodulin at a tropomyosin/tropomodulin ratio of 1:4, but with a sevenfold lower affinity than erythrocyte tropomyosin at the 1:4 ratio. These results correlate with oxidative cross-linking data which indicate that tropomodulin can self-associate to form dimers and tetramers in solution. Since tropomodulin interacts with one of the ends of tropomyosin, varying interactions of tropomyosin isoforms with tropomodulin probably reflect the heterogeneity in N-terminal or C-terminal sequences characteristic of the different tropomyosin isoforms. Isoform-specific interactions of tropomodulin with tropomyosins may represent a novel mechanism for selective regulation of tropomyosin/actin interactions.  相似文献   

7.
The structure of tropomodulin, the unique capping protein for the pointed end (the slow-growing end) of an actin filament, was studied. An improved Escherichia coli expression system for chicken E-tropomodulin was established and tropomodulin was prepared, Tmod (N39), in which 15 amino acid residues from the original C-terminus are deleted at the DNA level. This expression and purification system accidentally co-produces an 11-kDa fragment with the original N-terminus (N11). By applying limited proteolysis to Tmod (N39), a 20-kDa C-terminal fragment (C20) was obtained. The limited proteolysis data, as well as the fluorescence spectrometry and CD analyses of Tmod (N39), C20 and N11, revealed that tropomodulin is an alpha-helical protein that consists of two distinct domains. The C-terminal half (20 kDa) is resistant to proteolysis, which suggests that this domain is tightly folded. In contrast, the N-terminal half is susceptible to proteolysis, indicating that in solution this half is likely to be extended or to form a highly flexible structure. Cross-linking experiments with glutaraldehyde indicated that Tmod (N39) and N11 can form complexes with tropomyosin, whereas C20 cannot. This confirms the previous report that the site(s) of interaction with tropomyosin resides in the N-terminal 11-kDa region of tropomodulin.  相似文献   

8.
Actin filaments are polar; their barbed (fast-growing) and pointed (slow-growing) ends differ in structure and dynamic properties. The slow-growing end is regulated by tropomodulins, a family of capping proteins that require tropomyosins for optimal function. There are four tropomodulin isoforms; their distributions vary depending on tissue type and change during development. The C-terminal half of tropomodulin contains one compact domain represented by alternating α-helices and β-structures. The tropomyosin-independent actin-capping site is located at the C-terminus. The N-terminal half has no regular structure; however, it contains a tropomyosin-dependent actin-capping site and two tropomyosin-binding sites. One tropomodulin molecule can bind two tropomyosin molecules. Effectiveness of tropomodulin binding to tropomyosin depends on the tropomyosin isoform. Regulation of tropomodulin binding at the pointed end as well as capping effectiveness in the presence of specific tropomyosins may affect formation of local cytoskeleton and dynamics of actin filaments in cells.  相似文献   

9.
Regulation of actin filament dynamics underlies many cellular functions. Tropomodulin together with tropomyosin can cap the pointed, slowly polymerizing, filament end, inhibiting addition or loss of actin monomers. Tropomodulin has an unstructured N-terminal region that binds tropomyosin and a folded C-terminal domain with six leucine-rich repeats. Of tropomodulin 1's 359 amino acids, an N-terminal fragment (Tmod1(1)(-)(92)) suffices for in vitro function, even though the C-terminal domain can weakly cap filaments independent of tropomyosin. Except for one short alpha-helix with coiled coil propensity (residues 24-35), the Tmod1(1)(-)(92) solution structure shows that the fragment is disordered and highly flexible. On the basis of the solution structure and predicted secondary structure, we have introduced a series of mutations to determine the structural requirements for tropomyosin binding (using native gels and CD) and filament capping (by measuring actin polymerization using pyrene fluorescence). Tmod1(1)(-)(92) fragments with mutations of an interface hydrophobic residue, L27G and L27E, designed to destroy the alpha-helix or coiled coil propensity, lost binding ability to tropomyosin but retained partial capping function in the presence of tropomyosin. Replacement of a flexible region with alpha-helical residues (residues 59-61 mutated to Ala) had no effect on tropomyosin binding but inhibited the capping function. A mutation in a region predicted to be an amphipathic helix (residues 65-75), L71D, destroyed the capping function. The results suggest that molecular flexibility and binding to actin via an amphipathic helix are both required for tropomyosin-dependent capping of the pointed end of the actin filament.  相似文献   

10.
Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.  相似文献   

11.
The length and spatial organization of thin filaments in skeletal muscle sarcomeres are precisely maintained and are essential for efficient muscle contraction. While the major structural components of skeletal muscle sarcomeres have been well characterized, the mechanisms that regulate thin filament length and spatial organization are not well understood. Tropomodulin is a new, 40.6-kD tropomyosin-binding protein from the human erythrocyte membrane skeleton that binds to one end of erythrocyte tropomyosin and blocks head-to-tail association of tropomyosin molecules along actin filaments. Here we show that rat psoas skeletal muscle contains tropomodulin based on immunoreactivity, identical apparent mobility on SDS gels, and ability to bind muscle tropomyosin. Results from immunofluorescence labeling of isolated myofibrils at resting and stretched lengths using anti-erythrocyte tropomodulin antibodies indicate that tropomodulin is localized at or near the free (pointed) ends of the thin filaments; this localization is not dependent on the presence of myosin thick filaments. Immunoblotting of supernatants and pellets obtained after extraction of myosin from myofibrils also indicates that tropomodulin remains associated with the thin filaments. 1.2-1.6 copies of muscle tropomodulin are present per thin filament in myofibrils, supporting the possibility that one or two tropomodulin molecules may be associated with the two terminal tropomyosin molecules at the pointed end of each thin filament. Although a number of proteins are associated with the barbed ends of the thin filaments at the Z disc, tropomodulin is the first protein to be specifically located at or near the pointed ends of the thin filaments. We propose that tropomodulin may cap the tropomyosin polymers at the pointed end of the thin filament and play a role in regulating thin filament length.  相似文献   

12.
Tropomodulin is a pointed end capping protein for tropomyosin-coated actin filaments that is hypothesized to play a role in regulating the precise lengths of striated muscle thin filaments (Fowler, V. M., M. A. Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120:411-420; Weber, A., C. C. Pennise, G. G. Babcock, and V. M. Fowler. 1994, J. Cell Biol. 127:1627-1635). To gain insight into the mechanisms of thin filament assembly and the role of tropomodulin therein, we have characterized the temporal appearance, biosynthesis and mechanisms of assembly of tropomodulin onto the pointed ends of thin filaments during the formation of striated myofibrils in primary embryonic chick cardiomyocyte cultures. Our results demonstrate that tropomodulin is not assembled coordinately with other thin filament proteins. Double immunofluorescence staining and ultrastructural immunolocalization demonstrate that tropomodulin is incorporated in its characteristic sarcomeric location at the pointed ends of the thin filaments after the thin filaments have become organized into periodic I bands. In fact, tropomodulin assembles later than all other well characterized myofibrillar proteins studied including: actin, tropomyosin, alpha-actinin, titin, myosin and C-protein. Nevertheless, at steady state, a significant proportion (approximately 39%) of tropomodulin is present in a soluble pool throughout myofibril assembly. Thus, the absence of tropomodulin in some striated myofibrils is not due to limiting quantities of the protein. In addition, kinetic data obtained from [35S]methionine pulse-chase experiments indicate that tropomodulin assembles more slowly into myofibrils than does tropomyosin. This observation, together with results obtained using a novel permeabilized cell model for thin filament assembly, indicate that tropomodulin assembly is dependent on the prior association of tropomyosin with actin filaments. We conclude that tropomodulin is a late marker for the assembly of striated myofibrils in cardiomyocytes; its assembly appears to be linked to their maturity. We propose that tropomodulin is involved in maintaining and stabilizing the final lengths of thin filaments after they are assembled.  相似文献   

13.
Two families of actin regulatory proteins are the tropomodulins and tropomyosins. Tropomodulin binds to tropomyosin (TM) and to the pointed end of actin filaments and "caps" the pointed end (i.e., inhibits its polymerization and depolymerization). Tropomodulin 1 has two distinct actin-capping regions: a folded C-terminal domain (residues 160-359), which does not bind to TM, and a conserved, N-terminal region, within residues 1-92 that binds TM and requires TM for capping activity. NMR and circular dichroism were used to determine the structure of a peptide containing residues 1-92 of tropomodulin (Tmod1(1-92)) and to define its TM binding site. Tmod1(1-92) is mainly disordered with only one helical region, residues 24-35. This helix forms part of the TM binding domain, residues 1-35, which become more ordered upon binding a peptide containing the N-terminus of an alpha-TM. Mutation of L27 to E or G in the Tmod helix reduces TM affinity. Residues 49-92 are required for capping but do not bind TM. Of these, residues 67-75 have the sequence of an amphipathic helix, but are not helical. Residues 55-62 and 76-92 display negative 1H-15N heteronuclear Overhauser enhancements showing they are flexible. The conformational dynamics of these residues may be important for actin capping activity.  相似文献   

14.
Human erythrocytes contain a Mr 43,000 tropomyosin-binding protein that is unrelated to actin and that has been proposed to play a role in modulating the association of tropomyosin with spectrin-actin complexes based on its stoichiometry in the membrane skeleton of one Mr 43,000 monomer per short actin filament (Fowler, V. M. 1987. J. Biol. Chem. 262:12792-12800). Here, we describe an improved procedure to purify milligram quantities to 98% homogeneity and we show that this protein inhibits tropomyosin binding to actin by a novel mechanism. We have named this protein tropomodulin. Unlike other proteins that inhibit tropomyosin-actin interactions, tropomodulin itself does not bind to F-actin. EM of rotary-shadowed tropomodulin-tropomyosin complexes reveal that tropomodulin (14.5 +/- 2.4 nm [SD] in diameter) binds to one of the ends of the rod-like tropomyosin molecules (33 nm long). In agreement with this observation, Dixon plots of inhibition curves demonstrate that tropomodulin is a non-competitive inhibitor of tropomyosin binding to F-actin (Ki = 0.7 microM). Hill plots of the binding of the tropomodulin-tropomyosin complex to actin indicate that binding does not exhibit any positive cooperativity (n = 0.9), in contrast to tropomyosin (n = 1.9), and that the apparent affinity of the complex for actin is reduced 20-fold with respect to that of tropomyosin. These results suggest that binding of tropomodulin to tropomyosin may block the ability of tropomyosin to self-associate in a head-to-tail fashion along the actin filament, thereby weakening its binding to actin. Antibodies to tropomodulin cross-react strongly with striated muscle troponin I (but not with troponin T) as well as with a nontroponin Mr 43,000 polypeptide in muscle and in other nonerythroid cells and tissues, including brain, lens, neutrophils, and endothelial cells. Thus, erythrocyte tropomodulin may be one member of a family of tropomyosin-binding proteins that function to regulate tropomyosin-actin interactions in non-muscle cells and tissues.  相似文献   

15.
Tropomodulins are a family of important regulators of actin dynamics at the pointed ends of actin filaments. Four isoforms of tropomodulin, Tmod1‐Tmod4, are expressed in vertebrates. Binding of tropomodulin to the pointed end is dependent on tropomyosin, an actin binding protein that itself is represented in mammals by up to 40 isoforms. The understanding of the regulatory role of the tropomodulin/tropomyosin molecular diversity has been limited due to the lack of a three‐dimensional structure of the tropomodulin/tropomyosin complex. In this study, we mapped tropomyosin residues interacting with two tropomyosin‐binding sites of tropomodulin and generated a three‐dimensional model of the tropomodulin/tropomyosin complex for each of these sites. The models were refined by molecular dynamics simulations and validated via building a self‐consistent three‐dimensional model of tropomodulin assembly at the pointed end. The model of the pointed‐end Tmod assembly offers new insights in how Tmod binding ensures tight control over the pointed end dynamics.  相似文献   

16.
Tropomodulin is a tropomyosin-dependent actin filament capping protein involved in the structural formation of thin filaments and in the regulation of their lengths through its localization at the pointed ends of actin filaments. The disordered N-terminal domain of tropomodulin contains three functional sites: two tropomyosin-binding and one tropomyosin-dependent actin-capping sites. The C-terminal half of tropomodulin consists of one compact domain containing a tropomyosin-independent actin-capping site. Here we determined the structural properties of tropomodulin-1 that affect its roles in cardiomyocytes. To explore the significance of individual tropomyosin-binding sites, GFP-tropomodulin-1 with single mutations that destroy each tropomyosin-binding site was expressed in cardiomyocytes. We demonstrated that both sites are necessary for the optimal localization of tropomodulin-1 at thin filament pointed ends, with site 2 acting as the major determinant. To investigate the functional properties of the tropomodulin C-terminal domain, truncated versions of GFP-tropomodulin-1 were expressed in cardiomyocytes. We discovered that the leucine-rich repeat (LRR) fold and the C-terminal helix are required for its proper targeting to the pointed ends. To investigate the structural significance of the LRR fold, we generated three mutations within the C-terminal domain (V232D, F263D, and L313D). Our results show that these mutations affect both tropomyosin-independent actin-capping activity and pointed end localization, most likely by changing local conformations of either loops or side chains of the surfaces involved in the interactions of the LRR domain. Studying the influence of these mutations individually, we concluded that, in addition to the tropomyosin-independent actin-capping site, there appears to be another regulatory site within the tropomodulin C-terminal domain.  相似文献   

17.
The pointed end capping protein, tropomodulin, increases the critical concentration of barbed end capped actin, i.e. it lowers the apparent affinity of pointed ends for actin monomers. We show here that this is due to the conversion of pointed end ADP. P(i)-actin (low critical concentration) to ADP-actin (high critical concentration) when 70-98% of the ends are capped by tropomodulin. We propose that this is due to the low affinity of tropomodulin for pointed ends (K(d) approximately 0.3 microM), which allows tropomodulin to rapidly exchange binding sites and transiently block access of actin monomers to all pointed ends. This leaves time for ATP hydrolysis and phosphate release to go to completion between successive monomer additions to the pointed end. When the affinity of tropomodulin for pointed ends was increased about 1000-fold by the presence of tropomyosin (K(d) < 0.05 nM), capping of 95% of the ends by tropomodulin did not alter the critical concentration. However, the critical concentration did increase when the tropomodulin concentration was raised to the high values effective in the absence of tropomyosin. This may reflect transient tropomodulin binding to tropomyosin-free actin molecules at the pointed ends of the tropomyosin-actin filaments without a high affinity tropomodulin cap, i.e. the ends that determine the value of the actin critical concentration.  相似文献   

18.
Tropomodulin is a globular protein that caps the pointed end of actin filaments by complexing with the N-terminus of a tropomyosin (TM) molecule. TM consists of coiled coils except for the N-terminus, which may be globular. Here we report that human TM isoform 5 (hTM5) lacking the N-terminal 18 residues lost its binding activity toward tropomodulin. We further characterized the tropomodulin-binding site by creating a series of deletion and missense mutations within this region, followed by a solid-phase binding assay. I7, V10, and I14, hydrophobic residues located at the a and d positions of N-terminal heptad repeats involving intertwine, are essential for tropomodulin binding. R12, a positively charged residue at the f position, is also involved in recognition. In contrast, A2R and G3Y mutations, each creating a bulky N-terminus, did not alter the binding. In addition, rat TM5b, which differs from hTM5 in residues 4-6, exhibits a similar binding affinity. The tropomodulin-binding site, therefore, is mapped to residues 7-14 at the beginning of the long heptad repeats. Column chromatography revealed that hTM5 mutants remained capable of dimerization. Results also suggest tropomodulin has a groove-type, rather than a cavity-type, binding site for hTM5. We also mapped the epitope of monoclonal antibody LC1 to residues 4-10 of hTM5 and showed the competition between mAb LC1 and tropomodulin in hTM5 binding. Since the N-terminal residues need to overlap with the C-terminus of TM in their head-to-tail association, this investigation elucidates the mechanisms by which the tropomodulin-hTM5 complex is formed and functions in regulating the actin filaments.  相似文献   

19.
Cox PR  Zoghbi HY 《Genomics》2000,63(1):97-107
Tropomodulin (TMOD) is the actin-capping protein for the slow-growing end of filamentous actin, and a neuronal-specific isoform, neuronal tropomodulin (NTMOD), is the major binding protein to brain tropomyosin in rat. The Drosophila TMOD homolog, Sanpodo, alters sibling cell fate determination, so we used a cross-species approach to identify additional TMOD family members that may play a critical role in this process. We characterized the human and mouse orthologs to rat NTMOD (TMOD2 and Tmod2, respectively) as well as two novel tropomodulin family members (TMOD3, Tmod3 and TMOD4, Tmod4). Their expression patterns vary extensively, from ubiquitous (TMOD3 and Tmod3) to muscle (TMOD4) or neuronal tissues only (TMOD2 and Tmod2). TMOD2 and TMOD3 map next to one another on chromosome 15q21.1-q21.2, and their mouse orthologs map to a homologous region on mouse chromosome 9; TMOD4 maps to the telomeric end of 1q12 and Tmod4 to a homologous region of mouse chromosome 3. Their location and expression patterns make TMOD2 and TMOD3 candidate genes for amyotrophic lateral sclerosis 5 (ALS5) and dyslexia-1 (DYX1) and TMOD4 a candidate gene for limb girdle muscular dystrophy 1B (LGMD1B). Our mapping efforts revealed new regions of paralogy among chromosomes 1q, 9q, 15q, and 19p.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号