首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The mutagenic effects of low doses of radiation on occupationally exposed subjects were studied on lymphocyte culture using two methods: analysis of structural chromosome aberrations and micronucleus assay. The results obtained in subjects exposed to ionising radiation alone were compared to those exposed to both ionising radiation and ultrasound. A correlation between the total number of chromosome aberrations and distribution of micronuclei in the genome of somatic cells show higher deviation in the group exposed to X-ray and ultrasound than in the group exposed to X-rays alone. The degree of genome damage in occupational exposure to X-rays and ultrasound were discussed.  相似文献   

2.
Disulphide bonds in proteins are known to play diverse roles ranging from folding to structure to function. Thorough knowledge of the conservation status and structural state of the disulphide bonds will help in understanding of the differences in homologous proteins. Here we present a database for the analysis of conservation and conformation of disulphide bonds in SCOP structural families. This database has a wide range of applications including mapping of disulphide bond mutation patterns, identification of disulphide bonds important for folding and stabilization, modeling of protein tertiary structures and in protein engineering. The database can be accessed at: http://bioinformatics.univ-reunion.fr/analycys/.  相似文献   

3.
The analysis of disulphide bond containing proteins in the Protein Data Bank (PDB) revealed that out of 27,209 protein structures analyzed, 12,832 proteins contain at least one intra-chain disulphide bond and 811 proteins contain at least one inter-chain disulphide bond. The intra-chain disulphide bond containing proteins can be grouped into 256 categories based on the number of disulphide bonds and the disulphide bond connectivity patterns (DBCPs) that were generated according to the position of half-cystine residues along the protein chain. The PDB entries corresponding to these 256 categories represent 509 unique SCOP superfamilies. A simple web-based computational tool is made freely available at the website http://www.ccmb.res.in/bioinfo/dsbcp that allows flexible queries to be made on the database in order to retrieve useful information on the disulphide bond containing proteins in the PDB. The database is useful to identify the different SCOP superfamilies associated with a particular disulphide bond connectivity pattern or vice versa. It is possible to define a query based either on a single field or a combination of the following fields, i.e., PDB code, protein name, SCOP superfamily name, number of disulphide bonds, disulphide bond connectivity pattern and the number of amino acid residues in a protein chain and retrieve information that match the criterion. Thereby, the database may be useful to select suitable protein structural templates in order to model the more distantly related protein homologs/analogs using the comparative modeling methods.  相似文献   

4.
The majority of 3D structures of macromolecules are currently determined by macromolecular crystallography, which employs the diffraction of X-rays on single crystals. However, during diffraction experiments, the X-rays can damage the protein crystals by ionization processes, especially when powerful X-ray sources at synchrotron facilities are used. This process of radiation damage generates photo-electrons that can get trapped in protein moieties. The 3D structure derived from such experiments can differ remarkably from the structure of the native molecule. Recently, the crystal structures of different oxidation states of horseradish peroxidase and nickel-containing superoxide dismutase were determined using crystallographic redox titration performed during the exposure of the crystals to the incident X-ray beam. Previous crystallographic analyses have not shown the distinct structures of the active sites associated with the redox state of the structural features of these enzymes. These new studies show that, for protein moieties that are susceptible to radiation damage and prone to reduction by photo-electrons, care is required in both the design of the diffraction experiment and the analysis and interpretation.  相似文献   

5.
A heterobifunctional reagent, N-succinimidyl 3-(2-pyridyldithio)propionate, was synthesized. Its N-hydroxysuccinimide ester group reacts with amino groups and the 2-pyridyl disulphide structure reacts with aliphatic thiols. A new thiolation procedure for proteins is based on this reagent. The procedure involves two steps. First, 2-pyridyl disulphide structures are introduced into the protein by the reaction of some of its amino groups with the N-hydroxysuccinimide ester sie of the reagent. The protein-bound 2-pyridyl disulphide structures are then reduced with dithiothreitol. This reaction can be carried out without concomitant reduction of native disulphide bonds. The technique has been used for the introduction of thiol groups de novo into ribonuclease, gamma-globulin, alpha-amylase and horseradish peroxidase. N-Succinimidyl 3-(2-pyridyldithio)propionate can also be used for the preparation of protein-protein conjugates. This application is based on the fact that protein-2-pyridyl disulphide derivatives (formed from the reaction of non-thiol proteins with the reagent) react with thiol-containing proteins (with native thiols or thiolated by, for example, the method described above) via thiol-disulphide exchange to form disulphide-linked protein-protein conjugates. This conjugation technique has been used for the preparation of an alpha-amylase-urease, a ribonuclease-albumin and a peroxidase-rabbit anti-(human transferrin) antibody conjugate. The disulphide bridges between the protein molecules can easily be split by reduction or by thiol-disulphide exchange. Thus conjugation is reversible. This has been demonstrated by scission of the ribonuclease-albumin and the alpha-amylase-urease conjugate into their components with dithiothreitol. N-Succinimidyl 3-(2-pyridyldithio)propionate has been prepared in crystalline form, in which state (if protected against humidity) it is stable on storage at room temperature (23 degrees C).  相似文献   

6.
In recent years, the awareness of potential radiation damage of metal centers in protein crystals during crystallographic data collection has received increasing attention. The radiation damage can lead to radiation-induced changes and reduction of the metal sites. One of the research fields where these concerns have been comprehensively addressed is the study of the reaction intermediates of the heme peroxidase and oxygenase reaction cycles. For both the resting states and the high-valent intermediates, the X-rays used in the structure determination have given undesired side effects through radiation-induced changes to the trapped intermediates. However, X-rays have been used to generate and trap the peroxy/hydroperoxy state in crystals. In this review, the structural work and the influence of X-rays on these intermediates in myoglobin are summarized and viewed in light of analogous studies on similar intermediates in peroxidases and oxygenases.  相似文献   

7.
ERp57 is a member of the protein disulphide isomerase family of oxidoreductases, which are involved in native disulphide bond formation in the endoplasmic reticulum of mammalian cells. This enzyme has been shown to be associated with both calnexin and calreticulin and, therefore, has been proposed to be a glycoprotein-specific oxidoreductase. Here, we identify endogenous substrates for ERp57 by trapping mixed disulphide intermediates between enzyme and substrate. Our results demonstrate that the substrates for this enzyme are mostly heavily glycosylated, disulphide bonded proteins. In addition, we show that the substrate proteins share common structural domains, indicating that substrate specificity may involve specific structural features as well as the presence of an oligosaccharide side chain. We also show that the folding of two of the endogenous substrates for ERp57 is impaired in ERp57 knockout cells and that prevention of an interaction with calnexin or calreticulin perturbs the folding of some, but not all, substrates with multiple disulphide bonds. These results suggest a specific role for ERp57 in the isomerisation of non-native disulphide bonds in specific glycoprotein substrates.  相似文献   

8.
Protein disulphide bonds are formed in the endoplasmic reticulum of eukaryotic cells and the periplasmic space of prokaryotic cells. The main pathways that catalyse the formation of protein disulphide bonds in prokaryotes and eukaryotes are remarkably similar, and they share several mechanistic features. The recent identification of new redox-active proteins in humans and yeast that mechanistically parallel the more established redox-active enzymes indicates that there might be further uncharacterized redox pathways throughout the cell.  相似文献   

9.
X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 μm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200–50 μm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, short-period undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50–1 μm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.  相似文献   

10.
Maeda K  Finnie C  Svensson B 《Proteomics》2005,5(6):1634-1644
Using thiol-specific fluorescence labelling, over 30 putative target proteins of thioredoxin h with diverse structures and functions have been identified in seeds of barley and other plants. To gain insight at the structural level into the specificity of target protein reduction by thioredoxin h, thioredoxin h-reducible disulphide bonds in individual target proteins are identified using a novel strategy based on differential alkylation of cysteine thiol groups by iodoacetamide and 4-vinylpyridine. This method enables the accessible cysteine side chains in the thiol form (carbamidomethylated) to be distinguished from those inaccessible or disulphide bound form (pyridylethylated) according to the mass difference in the peptide mass maps obtained by matrix-assistend laser desorption/ionisation-time of flight mass spectrometry. Using this approach, in vitro reduction of disulphides in recombinant barley alpha-amylase/subtilisin inhibitor (BASI) by barley thioredoxin h isoform 1 was analysed. Furthermore, the method was coupled with two-dimensional electrophoresis for convenient thioredoxin h-reducible disulphide identification in barley seed extracts without the need for protein purification or production of recombinant proteins. Mass shifts of 15 peptides, induced by treatment with thioredoxin h and differential alkylation, identified specific reduction of nine disulphides in BASI, four alpha-amylase/trypsin inhibitors and a protein of unknown function. Two specific disulphides, located structurally close to the alpha-amylase binding surfaces of BASI and alpha-amylase inhibitor BMAI-1 were demonstrated to be reduced to a particularly high extent. For the first time, specificity of thioredoxin h for particular disulphide bonds is demonstrated, providing a basis to study structural aspects of the recognition mechanism and regulation of target proteins.  相似文献   

11.
The primary structure of human urogastrone.   总被引:9,自引:0,他引:9  
Urogastrone is a potent inhibitor of gastric acid secretion which is present in human urine. Its existence has been known for over 30 years but it has only recently been isolated in a sufficiently pure form for detailed structural studies to be undertaken. Two separate polypeptides beta- and gamma-urogastrone were isolated. The structures were established by carrying out enzymic degradations of S-carboxymethyl and S-carboxamidomethyl derivatives with trypsin, chymotrypsin, thermolysin and a protease derived from the fungus Armillaria mellea. Sequences of the smaller peptides thus obtained were determined by the dansyl Edman method. Partial acid hydrolysis of urogastrone itself gave fragments containing single intact disulphide bonds, and oxidation then allowed the direction of individual bonds to be established. Beta-Urogastrone was shown to be a 53-amino acid residue polypeptide containing three disulphide bonds, and gamma-urogastrone had an identical sequence but lacked the C-terminal arginine residue. Urogastrone was subsequently found to be structurally related to mouse epidermal growth factor in that 37 of the 53 residues were commonly located in each polypeptide. Furthermore, as both peptides has similar effects upon gastric acid secretion and upon epidermal growth, urogastrone was also a human epidermal growth factor. The 16 variable residues were spread across the molecule, all apart from two were compatible with single base changes in the triplet condons, and the overall effect was to make uorgastrone more acidic than EGF. The smallest biologically active unit has not been defined but at least six residues can be removed from the C-terminus without causing a reduction in potency.  相似文献   

12.
Elution of complex protein mixtures on a matrix containing reactive disulphide bonds (Thiopropyl-Sepharose 6B, Pharmacia) results in immobilisation of thiol-containing molecules. Specific protein fractions can be displaced from the gel using different low-molecular-weight reducing agents. Thus a single sequential elution can separate and resolve thiol-containing proteins in a rapid and convenient step. The method is illustrated with reference to beef liver thiol: disulphide oxidoreductases.  相似文献   

13.
Results from previous studies have suggested that an intramolecular disulphide bond in the exoprotein pullulanase is needed for its recognition and transport across the outer membrane. This interpretation of the data is shown here to be incorrect: pullulanase devoid of all potential disulphide bonds is secreted with apparently the same efficiency as the wild-type protein. Furthermore, the periplasmic disulphide bond, oxidoreductase DsbA, previously shown to catalyse the formation of a disulphide bond in pullulanase and to decrease its transit time in the periplasm, is shown here to be required for the rapid secretion of pullulanase devoid of disulphide bonds. Several possible explanations for the role of DsbA in pullulanase secretion are discussed.  相似文献   

14.
It is well known that ultraviolet (UV) radiation may reduce or even abolish the biological activity of proteins and enzymes. UV light, as a component of sunlight, is illuminating all light-exposed parts of living organisms, partly composed of proteins and enzymes. Although a considerable amount of empirical evidence for UV damage has been compiled, no deeper understanding of this important phenomenon has yet emerged. The present paper presents a detailed analysis of a classical example of UV-induced changes in three-dimensional structure and activity of a model enzyme, cutinase from Fusarium solani pisi. The effect of illumination duration and power has been investigated. A photon-induced mechanism responsible for structural and functional changes is proposed. Tryptophan excitation energy disrupts a neighboring disulphide bridge, which in turn leads to altered biological activity and stability. The loss of the disulphide bridge has a pronounced effect on the fluorescence quantum yield, which has been monitored as a function of illumination power. A general theoretical model for slow two-state chemical exchange is formulated, which allows for calculation of both the mean number of photons involved in the process and the ratio between the quantum yields of the two states. It is clear from the present data that the likelihood for UV damage of proteins is directly proportional to the intensity of the UV radiation. Consistent with the loss of the disulphide bridge, a complex pH-dependent change in the fluorescence lifetimes is observed. Earlier studies in this laboratory indicate that proteins are prone to such UV-induced radiation damage because tryptophan residues typically are located as next spatial neighbors to disulphide bridges. We believe that these observations may have far-reaching implications for protein stability and for assessing the true risks involved in increasing UV radiation loads on living organisms.  相似文献   

15.
One of the major contributors to protein structures is the formation of disulphide bonds between selected pairs of cysteines at oxidized state. Prediction of such disulphide bridges from sequence is challenging given that the possible combination of cysteine pairs as the number of cysteines increases in a protein. Here, we describe a SVM (support vector machine) model for the prediction of cystine connectivity in a protein sequence with and without a priori knowledge on their bonding state. We make use of a new encoding scheme based on physico-chemical properties and statistical features (probability of occurrence of each amino acid residue in different secondary structure states along with PSI-blast profiles). We evaluate our method in SPX (an extended dataset of SP39 (swiss-prot 39) and SP41 (swiss-prot 41) with known disulphide information from PDB) dataset and compare our results with the recursive neural network model described for the same dataset.  相似文献   

16.
17.
Experimental phasing of macromolecular crystal structures relies on the accurate measurement of two or more sets of reflections from isomorphous crystals, where the scattering power of a few atoms is different for each set. Recently, it was demonstrated that X-ray-induced intensity differences can also contain phasing information, exploiting specific structural changes characteristic of X-ray damage. This method (radiation damage-induced phasing; RIP) has the advantage that it can be performed on a single crystal of the native macromolecule. However, a drawback is that X-rays introduce many small changes to both solvent and macromolecule. In this study, ultraviolet (UV) radiation has been used to induce specific changes in the macromolecule alone, leading to a larger contrast between radiation-susceptible and nonsusceptible sites. Unlike X-ray RIP, UV RIP does not require the use of a synchrotron. The method has been demonstrated for a series of macromolecules.  相似文献   

18.
The kinetics of disulphide bond formation in reduced ribonuclease have been determined by following electrophoretically the appearance and disappearance of protein molecules with one, two, three or four intramolecular disulphide bonds. Each successive protein disulphide bond was observed to be formed much less readily than the preceding one, and the resulting species are increasingly unstable to reduction of their disulphide bonds. Most of the species formed directly, even those with four disulphide bonds, do not have the electrophoretic mobility of native protein.Protein molecules apparently refolded correctly are formed by slow intramolecular interconversion of molecules with three disulphide bonds and by thiolcatalyzed interchange of incorrect disulphide bonds in three-or four-disulphide species.These observations are compared with the properties of the folding pathway elucidated for pancreatic trypsin inhibitor under the same conditions and are contrasted with those often envisaged as to how proteins might fold.  相似文献   

19.
In this paper we present a protocol that allows a dynamic analysis of disulphide-bridge formation, based on freezing the intermediates by acid/acetone precipitation, followed by digestion with pepsin and direct fast-atom-bombardment mass-spectrometric analysis. A rapid definition of the exact nature of disulphide bridges formed can be obtained via a definitive assignment of disulphide-linked peptides according to their unique mass values. With the use of an appropriate thiol concentration, scrambling of the native disulphide bonds in bovine insulin occurs, and the process is catalysed by protein disulphide-isomerase (EC 5.3.4.1). The disruption of native and the formation of new disulphide bonds can be monitored as described above, and interestingly B-chain dimers containing Cys-B7-Cys-B7 and Cys-B7-Cys-B19 bonds are detected.  相似文献   

20.
The response of higher plants to ionising radiation depends on factors related to both radiation properties and plant features including species, cultivar, age, and structural complexity of the target organ. Adult plants of dwarf tomato were irradiated with different doses of X-rays to investigate possible variations in leaf morpho-anatomical traits, photosynthetic efficiency, and genomic DNA. In order to assess if and how responses depend on leaf developmental stage, we analysed two types of leaves; nearly mature leaves (L1) and actively developing leaves (L2), whose lamina size corresponded to 70 and 25 %, respectively, of the lamina size of the fully expanded leaves. The results show that the X-rays prevented full lamina expansion of the L2 leaves at all doses and induced early death of tissue of plants irradiated with doses higher than 20 Gy. Most anatomical modifications were not clearly dose-dependent and the radiation-induced increase in phenolic compounds was irrespective of dose. At high doses of X-rays (50 and 100 Gy), photochemical efficiency decreased significantly in both leaf types, whereas total chlorophyll content significantly decreased only in the L2 leaves. The random amplification of polymorphic DNA data show that the X-rays induced mutagenic effects in the L2 leaves even at low doses despite the absence of severe phenotypic alterations. Genetic structure found in the population of samples corroborates the results of anatomical and eco-physiological analyses: the 20 Gy dose seems to mark the threshold dose above which genetic alterations, structural anomalies, and perturbations in the photosynthetic apparatus become significant, especially in the actively expanding leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号