首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear DNA sequences from introns of the low-copy nuclear gene family encoding the second largest subunit of RNA polymerases and the ribosomal internal transcribed spacer (ITS) regions, combined with the psbE-petL spacer and the rps16 intron from the chloroplast genome were used to infer origins and phylogenetic relationships of North American polyploid Silene species and their closest relatives. Although the vast majority of North American Silene species are polyploid, which contrasts to the diploid condition dominating in other parts of the world, the phylogenetic analyses rejected a single origin of the North American polyploids. One lineage consists of tetraploid Silene menziesii and its diploid allies. A second lineage, Physolychnis s.l., consists of Arctic, European, Asian, and South American taxa in addition to the majority of the North American polyploids. The hexaploid S. hookeri is derived from an allopolyploidization between these two lineages. The tetraploid S. nivea does not belong to any of these lineages, but is closely related to the European diploid S. baccifera. The poor resolution within Physolychnis s.l. may be attributed to rapid radiation, recombination among homoeologues, homoplasy, or any combination of these factors. No extant diploid donors could be identified in Physolychnis s.l.  相似文献   

2.
Sequence data from a portion of the external transcribed spacer (ETS) and from the internal transcribed spacers (ITS1 and ITS2) of 18S-26S nuclear ribosomal DNA were used together with chloroplast DNA PCR-RFLP data to unravel patterns of allotetraploid speciation within the Western European Dactylorhiza polyploid complex. A maximum likelihood tree based on combined ETS and ITS sequences suggests that the Western European Dactylorhiza allotetraploids have evolved by hybridization between four main diploid lineages. Cloned sequences and the topology of the ITS plus ETS tree indicate that the allotetraploid species D. elata, D. brennensis, and D. sphagnicola have originated from the autotetraploid D. maculata together with the diploid D. incarnata, while D. majalis, D. traunsteineri, and D. angustata seem to have evolved by hybridization between the D. fuchsii s.str and D. incarnata lineages. Finally, the diploid D. saccifera lineage seems to have been involved together with the D. incarnata lineage in the formation of the allotetraploid D. praetermissa. The observed congruence between the chloroplast tree and the ITS/ETS tree suggests a directional evolution of the nrDNA after polyploidization in favor of the maternal genome. Considered together with morphological, biogeographical, and ecological evidence, the molecular analysis leads us to recognize four species within the investigated allotetraploid complex, namely D. majalis, D. praetermissa, D. elata, and D. sphagnicola.  相似文献   

3.
The proportion of polyploid plant species increases at higher latitudes, and it has been suggested that original postglacial Arctic immigrants of some large groups, including grasses, were polyploid. We analyzed noncoding nuclear and chloroplast DNA of all North American diploid Puccinellia (Poaceae) and a subset of arctic polyploids to hypothesize evolutionary relationships among diploids and to evaluate the parentage of polyploids. Diploids formed three lineages: one uniting arctic species P. arctica and P. banksiensis; a second comprising arctic species P. tenella, P. alaskana, P. vahliana, and P. wrightii; and a third uniting the two temperate species P. lemmonii and P. parishii. The arctic species P. angustata (hexaploid) and P. andersonii (primarily octoploid) apparently derive from the P. arctica-P. banksiensis lineage based on ITS and chloroplast sequences, and share an ancestor with arctic triploid/tetraploid P. phryganodes based on nrDNA sequences. Sequence comparisons also suggest tetraploid P. bruggemannii evolved from two arctic lineages: P. vahliana-P. wrightii and P. arctica-P. banksiensis. These patterns and the predominance of arctic rather than temperate diploid species support the idea that diploid Puccinellia recolonized the Arctic from northern glacial refugia like Beringia, and also formed stabilized polyploid hybrids during these refugial events or subsequently during postglacial colonization.  相似文献   

4.
Previous analyses of species relationships and polyploid origins in the mimosoid legume genus Leucaena have used chloroplast DNA (cpDNA) restriction site data and morphology. Here we present an analysis of a new DNA sequence data set for the nuclear ribosomal DNA (nrDNA) 5.8S subunit and flanking ITS 1 and ITS 2 spacers, a simultaneous analysis of the morphology, ITS and cpDNA data sets for the diploid species, and a detailed comparison of the cpDNA and ITS gene trees, which include multiple accessions of all five tetraploid species. Significant new insights into species relationships and polyploid origins, including that of the economically important tropical forage tree L. leucocephala, are discussed. Heterogeneous ITS copy types, including 26 putative pseudogene sequences, were found within individuals of four of the five tetraploid and one diploid species. Potential pseudogenes were identified using two pairwise comparison approaches as well as a tree-based method that compares observed and expected proportions of total ITS variation contributed by the 5.8S subunit optimized onto branches of one of the ITS gene trees. Inclusion of putative pseudogene sequences in the analysis provided evidence that some pseudogenes in allopolyploid L. leucocephala are not the result of post-allopolyploidization gene silencing, but were inherited from its putative diploid maternal progenitor L. pulverulenta.  相似文献   

5.
The contribution of C-genome diploid species to the evolution of polyploid oats was studied using C-genome ITS-specific primers. SCAR analysis among Avena accessions confirmed the presence of C-genome ITS1-5.8S-ITS2 sequences in the genome of AACC and AACCDD polyploids. In situ hybridization and screening of more than a thousand rRNA clones in Avena polyploid species containing the C-genome revealed substantial C-genome rRNA sequence elimination. C-genome clones sequenced and Maximum Likelihood Parsimony analysis revealed close proximity to Avena ventricosa ITS1-5.8S-ITS2 sequences, providing strong evidence of the latter's active role in the evolution of tetraploid and hexaploid oats. In addition, cloning and sequencing of the chloroplastic trnL intron among the most representative Avena species verified the maternal origin of A-genome for the AACC interspecific hybrid formation, which was the genetic bridge for the establishment of cultivated hexaploid oats.  相似文献   

6.
The recently described polyploid Saxifraga svalbardensis is endemic to the arctic archipelago of Svalbard. We investigated relationships among four closely related species of Saxifraga in Svalbard and tested three previously proposed hypotheses for the origin of S. svalbardensis: (1) differentiation from the morphologically and chromosomally variable polyploid S. cernua; (2) hybridization between the diploid S. hyperborea and S. cernua; and (3) hybridization between the tetraploid S. rivularis and S. cernua. Fifteen populations were analyzed using random amplified polymorphic DNAs (RAPDs) and nucleotide sequences of the chloroplast gene matK and the internal transcribed spacers (ITS) of nuclear ribosomal DNA (rDNA). RAPD and matK data suggest that S. svalbardensis has originated from a hybrid with S. rivularis as the maternal parent and S. cernua as the paternal parent, possibly a single time, whereas ITS data could not be used to discriminate among the hypotheses. The data also suggest that the diploid S. hyperborea is a progenitor of the tetraploid S. rivularis. The four populations examined of S. svalbardensis were virtually identical for RAPD and ITS markers, whereas S. cernua showed high levels of variation, suggesting that the latter polyploid either has formed recurrently or has undergone considerable differentiation since its origin.  相似文献   

7.
Polyploidy is a major feature of angiosperm evolution and diversification. Most polyploid species have formed multiple times, yet we know little about the genetic consequences of recurrent formations. Among the clearest examples of recurrent polyploidy are Tragopogon mirus and T. miscellus (Asteraceae), each of which has formed repeatedly in the last ~80 years from known diploid progenitors in western North America. Here, we apply progenitor‐specific microsatellite markers to examine the genetic contributions to each tetraploid species and to assess gene flow among populations of independent formation. These data provide fine‐scale resolution of independent origins for both polyploid species. Importantly, multiple origins have resulted in considerable genetic variation within both polyploid species; however, the patterns of variation detected in the polyploids contrast with those observed in extant populations of the diploid progenitors. The genotypes detected in the two polyploid species appear to represent a snapshot of historical population structure in the diploid progenitors, rather than modern diploid genotypes. Our data also indicate a lack of gene flow among polyploid plants of independent origin, even when they co‐occur, suggesting potential reproductive barriers among separate lineages in both polyploid species.  相似文献   

8.
Variation in chromosome number and internal transcribed sequences (ITS) of nrDNA is used to infer phylogenetic relationships of a wide range ofHedera species. Polyploidy was found to be frequent inHedera, with diploid, tetraploid, hexaploid and octoploid populations being detected. Nucleotide additivity occurs in the ITS sequences of one tetraploid (H. hibernica) and two hexaploid species (H. maderensis, H. pastuchovii), suggesting that all three species originated by allopolyploidisation. ITS sequence polymorphism and nucleotide characters may indicate the presence of an ancient genome persistent only in some allopolyploid species. Phylogenetic analyses of ITS sequence data reveal two lineages ofHedera: one containing all sequences belonging to extant diploids plus the tetraploidH. algeriensis, and a second that includes this ancient ITS type and others exclusive to several polyploid species. The origin of the polyploids is evaluated on the basis of morphology, chromosome counts, ITS sequence polymorphism, and phylogenetic analyses. Reconstruction of reticulate evolution inHedera agrees with two allopolyploid areas on both sides of the Mediterranean basin. Morphological, molecular and cytological evidence also suggests an active dispersal ofHedera populations that may account for three independent introductions in Macaronesia.  相似文献   

9.
Polyploidization is one of the few mechanisms that can produce instantaneous speciation. Multiple origins of tetraploid lineages from the same two diploid progenitors are common, but here we report the first known instance of a single tetraploid species that originated repeatedly from at least three diploid ancestors. Parallel evolution of advertisement calls in tetraploid lineages of gray tree frogs has allowed these lineages to interbreed, resulting in a single sexually interacting polyploid species despite the separate origins of polyploids from different diploids. Speciation by polyploidization in these frogs has been the source of considerable debate, but the various published hypotheses have assumed that polyploids arose through either autopolyploidy or allopolyploidy of extant diploid species. We utilized molecular markers and advertisement calls to infer the origins of tetraploid gray tree frogs. Previous hypotheses did not sufficiently account for the observed data. Instead, we found that tetraploids originated multiple times from extant diploid gray tree frogs and two other, apparently extinct, lineages of tree frogs. Tetraploid lineages then merged through interbreeding to result in a single species. Thus, polyploid species may have complex origins, especially in systems in which isolating mechanisms (such as advertisement calls) are affected directly through hybridization and polyploidy.  相似文献   

10.
The origin and evolution of polyploids have been studied extensively in angiosperms and ferns but very rarely in gymnosperms. With the exception of three species of conifers, all natural polyploid species of gymnosperms belong to Ephedra, in which more than half of the species show polyploid cytotypes. Here, we investigated the origin and evolution of polyploids of Ephedra distributed in the Qinghai–Tibetan Plateau (QTP) and neighbouring areas. Flow cytometry (FCM) was used to measure the ploidy levels of the sampled species that are represented by multiple individuals from different populations, and then, two single‐copy nuclear genes (LFY and DDB2) and two chloroplast DNA fragments were used to unravel the possible origins and maternal donors of the polyploids. The results indicate that the studied polyploid species are allopolyploids, and suggest that allotetraploidy is a dominant mode of speciation in Ephedra. The high percentage of polyploids in the genus could be related to some of its biological attributes such as vegetative propagation, a relatively high rate of unreduced gamete formation, and a small genome size relative to most other gymnosperms. Significant ecological divergences between allotetraploids and their putative progenitors were detected by PCAs and anova and Tukey's tests, with the exception of E. saxatilis. The overlap of geographical distributions and ecological niches of some diploid species could have provided opportunities for interspecific hybridization and allopolyploid speciation.  相似文献   

11.
? Premise of the study: Polyploid speciation has been important in plant evolution. However, the conditions that favor the origination and persistence of polyploids are still not well understood. Here, we examine origins of 16 polyploid species in Mentzelia section Trachyphytum. ? Methods: We used phylogeny reconstructions based on DNA sequences from plastid regions and the nuclear gene isocitrate dehydrogenase (idh) to construct hypotheses of introgression and polyploidization. ? Key results: Molecular data suggest that homoploid hybridization has been surprisingly common in Trachyphytum. Diploid species had unequal involvement in polyploid origins, but most polyploid taxa had allopolyploid origins from extant progenitors. A few polyploids with extreme phenotypes did not appear to have extant progenitors. We infer that the progenitors of these species were derived from extinct diploid lineages or ancestral lineages of multiple extant diploids. In agreement with other recent studies, we recovered molecular evidence of multiple phylogenetically distinct origins for several polyploid taxa, including the widespread octoploid M. albicaulis. ? Conclusions: Evidence of high levels of introgression and allopolyploidy suggests that hybridization has played an important role in the evolution of Trachyphytum. Although idh sequences exhibited complicated evolution, including gene duplication, deletion, and recombination, they provided a higher percentage of informative characters for phylogeny reconstruction than the most variable plastid regions, allowing tests of hypotheses regarding polyploid origins. Given the necessity for rapidly evolving low-copy nuclear genes, researchers studying hybridization and polyploidy may increasingly turn to complex sequence data.  相似文献   

12.
Multiple origins of polyploidy from an ancestral diploid plant species were investigated using restriction site polymorphism and sequence variation in the chloroplast DNA (cpDNA) of Heuchera grossulariifolia (Saxifragaceae). Phylogenetic analysis indicated that autopolyploidy has arisen at least twice in the evolutionary history of this species and potentially up to as many as seven times. These results suggest a greater range of independent polyploid origins as compared to a previous study of H. grossulariifolia using cpDNA restriction sites that indicated a minimum of three independent origins. Moreover, most polyploid populations did not contain cpDNA haplotypes from a single origin, but rather combined haplotypes from at least two polyploid origins. Past migration among polyploid populations of independent origin or localized polyploid formation may explain the distribution of polyploid haplotypes within and among populations. The analysis also revealed a discrepancy between relatedness and geographical location. In nearly all sympatric populations of diploids and polyploids, polyploids had the same cpDNA haplotypes as diploids from a geographically remote population. This geographical discordance has several possible explanations, including small sample sizes, extinction of parental diploid haplotypes, chloroplast introgression, and homoplasy in the cpDNA sequence data. We conclude that the recurrent formation of polyploids is an important evolutionary mechanism in the diversification of H. grossulariifolia .  相似文献   

13.
14.
Oja T 《Hereditas》2002,137(2):113-118
Allozyme variation of ten heterozymes of seven enzymes among five accessions of a rare diploid Bromus fasciculatus was analysed with the use of PAGE and compared with that for six other species of section Genea of the genus Bromus. Allozymes charasteristic for diploids B. tectorum and B. fasciculatus are combined in fixed heterozygous phenotypes of tetraploid B. rubens. Fixed heterozygous phenotypes of tetraploid B. madritensis combine one allozyme of B. fasciculatus with another of diploid B. sterilis at each of the loci studied. Of the three diploids studied, only B. sterilis fits well for a role of a genome donor for the polyploid B. diandrus-rigidus complex. Bromus fasciculatus thus appears to be a diploid ancestor for the two tetraploids of section Genea, B. rubens and B. madritensis.  相似文献   

15.
BACKGROUND AND AIMS: Diploid representatives from the related polyploid complexes of Cardamine amara, C. pratensis and C. raphanifolia (Brassicaceae), were studied to elucidate phylogenetic relationships among the complexes and among the individual taxa included. METHODS: Two independent molecular data sets were used: nucleotide sequences from the internal transcribed spacers (ITS) of nrDNA, and amplified fragment length polymorphism (AFLP) markers. Seventeen diploid taxa from the studied groups were sampled. KEY RESULTS: Both ITS and AFLP analyses provided congruent results in inferred relationships, and revealed two main lineages. While the C. amara group, consisting of C. wiedemanniana and four subspecies of C. amara, was resolved as a well-supported monophyletic group, taxa from the C. pratensis and C. tenera groups (the latter representing diploid taxa of the complex of C. raphanifolia) all appeared together in a single clade/cluster with no support for the recognition of either of the groups. Intra-individual polymorphisms and patterns of nucleotide variation in the ITS region in C. uliginosa and C. tenera, together with the distribution of AFLP bands, indicate ancient hybridization and introgression among these Caucasian diploids. CONCLUSIONS: The lack of supported hierarchical structure suggests that extensive reticulate evolution between these groups, even at the diploid level, has occurred (although an alternative explanation, namely ancestral polymorphism in ITS data, cannot be completely excluded). Several implications for the investigation of the polyploid complexes of concern are drawn. When tracing origins of polyploid taxa, a much more complex scenario should be expected, taking into account all relatives as potential parents, irrespective of the group in which they are classified.  相似文献   

16.
Study of bread wheat (Triticum aestivum) may help to resolve several questions related to polyploid evolution. One such question regards the possibility that the component genomes of polyploids may themselves be polyphyletic, resulting from hybridization and introgression among different polyploid species sharing a single genome. We used the B genome of wheat as a model system to test hypotheses that bear on the monophyly or polyphyly of the individual constituent genomes. By using aneuploid wheat stocks, combined with PCR-based cloning strategies, we cloned and sequenced two single-copy-DNA sequences from each of the seven chromosomes of the wheat B genome and the homologous sequences from representatives of the five diploid species in section Sitopsis previously suggested as sister groups to the B genome. Phylogenetic comparisons of sequence data suggested that the B genome of wheat underwent a genetic bottleneck and has diverged from the diploid B genome donor. The extent of genetic diversity among the Sitopsis diploids and the failure of any of the Sitopsis species to group with the wheat B genome indicated that these species have also diverged from the ancestral B genome donor. Our results support monophyly of the wheat B genome.  相似文献   

17.

Background and Aims

Incongruence between chloroplast and nuclear DNA phylogenies, and single additive nucleotide positions in internal transcribed spacer (ITS) sequences of polyploid Australian/New Zealand (NZ) Lepidium species have been used to suggest a bicontinental hybrid origin. This pattern was explained by two trans-oceanic dispersals of Lepidium species from California and Africa and subsequent hybridization followed by homogenization of the ribosomal DNA sequence either to the Californian (C-clade) or to the African ITS-type (A-clade) in two different ITS-lineages of Australian/NZ Lepidium polyploids.

Methods

Genomic in situ hybridization (GISH) was used to unravel the genomic origin of polyploid Australian/NZ Lepidium species. Fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA) probes was applied to test the purported ITS evolution, and to facilitate chromosome counting in high-numbered polyploids.

Key Results

In Australian/NZ A-clade Lepidium polyploids, GISH identified African and Australian/NZ C-clade species as putative ancestral genomes. Neither the African nor the Californian genome were detected in Australian/NZ C-clade species and the Californian genome was not detected in Australian/NZ A-clade species. Five of the eight polyploid species (from 7x to 11x) displayed a diploid-like set of rDNA loci. Even the undecaploid species Lepidium muelleriferdinandi (2n = 11x = 88) showed only one pair of each rDNA repeat. In A-clade allopolyploids, in situ rDNA localization combined with GISH corroborated the presence of the African ITS-type.

Conclusions

The nuclear genomes of African and Australian/NZ C-clade species were detected by GISH in allopolyploid Australian/NZ Lepidium species of the A-clade, supporting their hybrid origin. The presumed hybrid origin of Australian/NZ C-clade taxa could not be confirmed. Hence, it is assumed that Californian ancestral taxa experienced rapid radiation in Australia/NZ into extant C-clade polyploid taxa followed by hybridization with African species. As a result, A-clade allopolyploid Lepidium species share the Californian chloroplast type and the African ITS-type with the C-clade Australian/NZ polyploid and African diploid species, respectively.Key words: Lepidium, Brassicaceae, FISH, GISH, hybridization, polyploidy, long-distance dispersal, ITS, rDNA, Australia, New Zealand  相似文献   

18.
Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6×) of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-copy nuclear marker region TOPO6 for 341 Hordeum individuals and eight outgroup species. PCR products were either directly sequenced or cloned and on average 12 clones per individual were included in phylogenetic analyses. In most diploid Hordeum species TOPO6 is probably a single-copy locus. Most sequences found in polyploid individuals phylogenetically cluster together with sequences derived from diploid species and thus allow the identification of parental taxa of polyploids. Four groups of sequences occurring only in polyploid taxa are interpreted as footprints of extinct diploid taxa, which contributed to allopolyploid evolution. Our analysis identifies three key species involved in the evolution of the American polyploids of the genus. (i) All but one of the American tetraploids have a TOPO6 copy originating from the Central Asian diploid H. roshevitzii, the second copy clustering with different American diploid species. (ii) All hexaploid species from the New World have a copy of an extinct close relative of H. californicum and (iii) possess the TOPO6 sequence pattern of tetraploid H. jubatum, each with an additional copy derived from different American diploids. Tetraploid H. bulbosum is an autopolyploid, while the assumed autopolyploid H. brevisubulatum (4×, 6×) was identified as allopolyploid throughout most of its distribution area. The use of a proof-reading DNA polymerase in PCR reduced the proportion of chimerical sequences in polyploids in comparison to Taq polymerase.  相似文献   

19.
In many polyploid species, polyploids often have different suites of floral traits and different flowering times than their diploid progenitor species. We hypothesized that such differences in floral traits in polyploids may subsequently affect their interactions with pollinating and other insect visitors. We measured floral morphology and flowering phenology in 14 populations of diploid and autotetraploid Heuchera grossulariifolia Rydb. (Saxifragaceae), determined if repeated evolution of independent polyploid lineages resulted in differentiation in floral morphology among those lineages, and ascertained if there was a consistent pattern of differentiation among genetically similar diploid and autotetraploid populations. In addition, we evaluated the differences in suites of floral visitors within a natural community where diploids and autotetraploids occur sympatrically. Overall, flowers of autotetraploid plants were larger and shaped differently than those of diploids, had a different flowering phenology than that of diploids, and attracted different suites of floral visitors. In comparison with flowers of diploids, tetraploid floral morphology varied widely from pronounced differences between cytotypes in some populations to similar flower shapes and sizes between ploidal levels in other populations. Observations of floral visitors to diploids and autotetraploids in a natural sympatric population demonstrated that the cytotypes had different suites of floral visitors and six of the 15 common visitors preferentially visited one ploidy more frequently. Moreover, we also found that floral morphology differed among independent autotetraploid origins, but there was no consistent pattern of differentiation between genetically similar diploid and autotetraploid populations. Hence, the results suggest that the process of polyploidization creates the potential for attraction of different suites of floral visitors. Multiple origins of polyploidy also presents the opportunity for new or different plant-insect interactions among independent polyploid lineages. These differences in turn may affect patterns of gene flow between diploids and polyploids and also among plants of independent polyploid origin. Polyploidy, therefore, may result in a geographic mosaic of interspecific interactions across a species' range, contributing to diversification in both plant and insect groups.  相似文献   

20.
? Premise of the study: Polyploidy plays an important role in race differentiation and eventually speciation. Underlying mechanisms include chromosomal and genomic changes facilitating reproductive isolation and/or stabilization of hybrids. A prerequisite for studying these processes is a sound knowledge on the origin of polyploids. A well-suited group for studying polyploid evolution consists of the three species of Melampodium ser. Leucantha (Asteraceae): M. argophyllum, M. cinereum, and M. leucanthum. ? Methods: The origin of polyploids was inferred using network and tree-based phylogenetic analyses of several plastid and nuclear DNA sequences and of fingerprint data (AFLP). Genome evolution was assessed via genome size measurements, karyotype analysis, and in situ hybridization of ribosomal DNA. ? Key results: Tetraploid cytotypes of the phylogenetically distinct M. cinereum and M. leucanthum had, compared to the diploid cytotypes, doubled genome sizes and no evidence of gross chromosomal rearrangements. Hexaploid M. argophyllum constituted a separate lineage with limited intermixing with the other species, except in analyses from nuclear ITS. Its genome size was lower than expected if M. cinereum and/or M. leucanthum were involved in its origin, and no chromosomal rearrangements were evident. ? Conclusions: Polyploids in M. cinereum and M. leucanthum are of recent autopolyploid origin in line with the lack of significant genomic changes. Hexaploid M. argophyllum also appears to be of autopolyploid origin against the previous hypothesis of an allopolyploid origin involving the other two species, but some gene flow with the other species in early phases of differentiation cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号