首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is generally accepted that higher plants evolved from ancestral forms of the modern charophytes. For this reason, we chose the characean alga, Chara corallina Klein ex Willd., em. R.D.W. (C. australis R. Br.), to determine whether this transition species produces plasmodesmata in a manner analogous to higher plants. As with higher plants and unlike most green algae, Chara utilizes a phragmoplast for cell division; however, in contrast with the situation in both lower and higher vascular plants, the developing cell plate and newly formed cell wall were found to be completely free of plasmodesmata. Only when the daughter cells had separated completely were plasmodesmata formed across the division wall. Presumably, highly localized activity of wall-degrading (or loosening) enzymes inserted into the plasma membrane play a central role in this process. In general appearance characean plasmodesmata are similar to those of higher plants with the notable exception that they lack an appressed endoplasmic reticulum. Further secondary modifications in plasmodesmal structure were found to occur as a function of cell development, giving rise to highly branched plasmodesmata in mature cell walls. These findings are discussed in terms of the evolution of the mechanism for plasmodesmata formation in algae and higher plants.This work was supported in part by National Foundation grant No. DCB-9016756 (W.J.L.). We thank the Electron Microscopy Center of Washington State University and the Zoology Department, University of California, Davis, for the use of their microscopy facilities.  相似文献   

2.
Studies focused upon the evolutionary transition from ancestral green algae to the earliest land plants are important from a range of ecological, molecular and evolutionary perspectives. A substantial suite of ultrastructural, biochemical and molecular data supports the concept that land plants (embryophytes) are monophyletically derived from an ancestral charophycean alga. However, the details of phylogenetic branching patterns linking extant charophytes and seedless embryophytes are currently unclear. Moreover, the fossil record has so far been mute regarding the algae-land plant transition. Nevertheless, an accurate reflection of major evolutionary events in the history of the earliest land plants can be obtained by comparative paleontological-neontological studies, and comparative molecular, cellular and developmental investigations of extant charophytes and bryophytes. This review focuses upon research progress toward understanding three clade-specific adaptations that were important in the successful colonization of land by plants: the histogenetic apical meristem, the matrotrophic embryo, and decay-resistant cell wall polymers.  相似文献   

3.
SUMMARY OF GREEN PLANT PHYLOGENY AND CLASSIFICATION   总被引:7,自引:0,他引:7  
Abstract— A cladogram of green plants involving all major extant groups of green algae, bryophytes, pteridophytes, and seed plants is presented. It is partly based on contributions by B. Mishler and S. Churchill, H. Wagner, and P. Crane. The relationships of green plants to other green organisms ( Prochloron , euglenophytes) are discussed. The characters and subclades of the cladogram are briefly discussed, with an attempt to indicate weak points. The possibility of including some major extinct groups is considered. A cladistic classification consistent with the cladogram is presented. Grades are abandoned as taxa and major clades like the division Chlorophyta (green algae excluding micro-monadophytes and charophytes sensu Mattox and Stewart), the division Streptophyta (charophytes + embryophytes), the subdivision Embryophytina (land plants or embryophytes), the superclass Tracheidatae (tracheophytes), and the class Spermatopsida (seed plants) are recognized.  相似文献   

4.
Multicellular development has evolved independently on numerous occasions and there is great interest in the developmental mechanisms utilized by each of the divergent lineages. Fucoid algae, in the stramenopile lineage (distinct from metazoans, fungi and green plants) have long been used as a model for early development based on unique life cycle characteristics. The initially symmetric fucoid zygote generates a developmental axis that determines not only the site of growth, but also the orientation of the first cell division, whose products have distinct developmental fates. Establishment and maintenance of this growth axis is dependent on formation of a filamentous actin array that directs vesicular movement, depositing new membrane and wall material for development of the rhizoid. What is not well known, is how formation and placement of the actin array is regulated in fucoid algae. A candidate for this function is Rac1, a small GTPase of the highly conserved Rho family, which has been implicated in controlling the formation of actin arrays in diverse eukaryotes. We demonstrate that Rac1 is not only present during formation of the filamentous actin array, but that its localization overlaps with the array in polarizing zygotes. Pharmacologically inhibiting Rac1 activity was shown to impede formation and maintenance of the actin array, and ultimately polar growth. Evidence is provided that a requirement of Rac1 function is its ability to associate with membranes via a post-translationally added lipid tail. Taken together, the data indicate that Rac1 is a necessary participant in establishment of the growth pole, presumably by regulating the placement and formation of the actin array. A role for Rac1 and related proteins in regulating actin is shared by animals, plants, fungi and with this work, brown algae, thus a conserved mechanism for generating polarity is in operation in unique eukaryotic lineages.  相似文献   

5.
Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500–600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.

Charophytes constitute a diverse array of green algal taxa that provide critical insight into plant evolution and offer exciting opportunities for multiple levels of study in plant cell biology.  相似文献   

6.
Sequences for the Rubisco large subunit (rbcL) gene were used to test hypotheses about the evolution of chloroplast shape and thallus type in genera of two families of conjugating green algae (Zygnematales): the Mesotaeniaceae (saccoderm desmids, mostly unicellular) and the Zygnemataceae (strictly filamentous). Unicellular (u) and filamentous (f) genera exhibit a series of three similar chloroplast shapes: ribbonlike (e.g. Spirotaenia [u], Spirogyra [f], and Sirogonium [f], laminate (e.g. Mesotaenium [u] and Mougeotia [f]), and twin-stellate (e.g. Cylindrocystis [u] and Zygnema [f]. Two conflicting phylogenetic hypotheses have been proposed: 1) families are polyphyletic constructs drawn from three lineages, each with unicellular and filamentous taxa characterized by a specific chloroplast shape; or 2) unicells form one monophyletic lineage (Mesotaeniaceae) and filaments form another (Zygnemataceae), with some chloroplast shapes independently derived. The rbcL data strongly refute hypothesis 2 (monophyly of the two traditional families) and support hypothesis 1 in part. Parsimony, maximum likelihood, and neighbor-joining analyses of the rbcL data strongly support monophyly of a clade containing taxa with ribbonlike chloroplasts and, to a lesser extent, monophyly of a second clade of the four genera with the other two chloroplast shapes. Two saccoderm genera (Roya, curved laminate chloroplasts; Netrium, "cucumber"-shaped chloroplasts) are not members of either of these clades, but they are included in a monophyletic Zygnematales .  相似文献   

7.
Summary 5S rRNA sequences from six additional green algae lend strong molecular support for the major outlines of higher plant and green algae phylogeny that have been proposed under varying naming conventions by several authors. In particular, the molecular evidence now available unequivocally supports the existence of at least two well-separated divisions of the Chlorobionta: the Chlorophyta and the Streptophyta (i.e., charophytes) (according to the nomenclature of Bremer). The chlamydomonad 5S rRNAs are, however, sufficiently distinct from both clusters that it may ultimately prove preferable to establish a third taxon for them. In support of these conclusions 5S rRNA sequence data now exist for members of four diverse classes of chlorophytes. These sequences all exhibit considerably more phylogenetic affinity to one another than any of them show toward members of the other cluster, the Streptophyta, or the twoChlamydomonas strains. Among the Charophyceae, new 5S rRNA sequences are provided herein for three genera,Spirogyra, Klebsormidium, andColeochate. All of these sequences and the previously publishedNitella sequence show greater resemblance among themselves and to the higher plants than they do to any of the other green algae examined to date. These results demonstrate that an appropriately named taxon that includes these green algae and the higher plants is strongly justified. The 5S rRNA data lack the resolution needed, however, to unequivocally determine which of several subdivisions of the charophytes is the sister group of the land plants. The evolutionary diversity ofChlamydomonas relative to the other green algae was recognized in earlier 5S rRNA studies but was unanticipated by ultrastructural work. These new data provide further evidence for the relative uniqueness of the chlamydomonads and are discussed further.  相似文献   

8.
Hildebrand  M.  &Dahlin  K. 《Journal of phycology》2000,36(S3):30-30
Molecular phylogenetic analysis of the conjugating green algae (Class Zygnemophyceae) using nuclear (SSU rDNA) and chloroplast ( rbcL ) gene sequences has resolved hypotheses of relationship at the class, order, and family levels, but several key questions will require data from additional genes. Based on SSU and rbc L sequences, the Zygnemophyceae and Desmidiales are monophyletic, and families of placoderm desmids are distinct clades (Desmidiaceae, Peniaceae, Closteriaceae, and Gonatozygaceae). In contrast, the Zygnemataceae and Mesotaeniaceae are paraphyletic, although whether these two traditional families constitute a clade is uncertain. In addition, relationships of genera within families have proven resistant to resolution with these two oft-used genes. We have sequenced the cox III gene from the mitochondrial genome to address some of these ambiguous portions of the phylogeny of conjugating green algae. The cox III gene is more variable than rbc L or SSU rDNA and offers greater resolving power for relationships of genera. We present preliminary analyses of coxIII sequences from each of the traditional families of Zygnemophyceae and contrast the resulting topologies with those derived from nuclear and chloroplast genes.  相似文献   

9.
Abstract— Separate cladistic analyses of the green algae, liverworts, and hornworts are presented. Classificatory and evolutionary implications of these analyses, in addition to our previously published cladistic analyses of mosses and the embryophytes as a whole, are discussed. The embryophytes are monophyletic, and are part of a larger monophyletic group that includes some of the green algae (the "charophytes"). Important evolutionary transformations in the early phylogeny of the land plants include: (1) retention of the zygote on the haploid plant (gametophyte), with the sporophyte generation arising de novo by delaying meiosis, (2) independent elaboration of an elongate sporophyte in some liverworts, some hornworts, and in the moss-tracheophyte clade, (3) independent origin of radial (axial) symmetry in the gametophyte in some liverworts and in the moss-tracheophyte clade, (4) independent origin of leaves on the gametophyte in some liverworts and in mosses, and (5) the unique development of a branching sporophyte with multiple sporangia in the tracheophytes.  相似文献   

10.
Fischerella ambigua is a branching blue-green alga, the filamentous nature of which is maintained almost entirely by sheath material. Cell division in this organism most closely resembles the septal division found in most unicellular organisms. In all filamentous blue-green algae previously examined with the electron microscope, cell division has resulted from the imagination of the plasma membrane and inner wall layer only; both the middle wall and the outer wall layers remain continuous throughout the length of the filament. In Fischerella, by contrast, the plasma membrane and the inner wall layer invaginate to produce initially 2 cells. However, the middle wall layer, outer wall layer, and sheath also invaginate to separate the daughter cells. The sheath alone remains continuous throughout the length of the filament.  相似文献   

11.
The Viridiplantae (green plants) include land plants as well as the two distinct lineages of green algae, chlorophytes and charophytes. Despite their critical importance for identifying the closest living relatives of land plants, phylogenetic studies of charophytes have provided equivocal results [1-5]. In addition, many relationships remain unresolved among the land plants, such as the position of mosses, liverworts, and the enigmatic Gnetales. Phylogenomics has proven to be an insightful approach for resolving challenging phylogenetic issues, particularly concerning deep nodes [6-8]. Here we extend this approach to the green lineage by assembling a multilocus data set of 77 nuclear genes (12,149 unambiguously aligned amino acid positions) from 77 taxa of plants. We therefore provide the first multigene phylogenetic evidence that Coleochaetales represent the closest living relatives of land plants. Moreover, our data reinforce the early divergence of liverworts and the close relationship between Gnetales and Pinaceae. These results provide a new phylogenetic framework and represent a key step in the evolutionary interpretation of developmental and genomic characters in green plants.  相似文献   

12.
Yamamoto M  Nishikawa T  Kajitani H  Kawano S 《Planta》2007,226(4):917-927
Non-flagellated vegetative green algae of the Trebouxiophyceae propagate mainly by autosporulation. In this manner, the mother cell wall is shed following division of the protoplast in each round of cell division. Binary fission type Nannochloris and budding type Marvania are also included in the Trebouxiophyceae. Phylogenetic trees based on the actin sequences of Trebouxiophyceae members revealed that the binary fission type Nannochloris bacillaris and the budding type Marvania geminata are closely related in a distal monophyletic group. Our results suggest that autosporulation is the ancestral mode of cell division in Trebouxiophyceae. To elucidate how non-autosporulative mechanisms such as binary fission and budding evolved, we focused on the cleavage of the mother cell wall. Cell wall development was analyzed using a cell wall-specific fluorescent dye, Fluostain I. Exfoliation of the mother cell wall was not observed in either N. bacillaris or M. geminata. We then compared the two algae by transmission electron microscopy with rapid freeze fixation and freeze substitution; in both algae, the mother cell wall was cleaved at the site of cell division, but remained adhered to the daughter cell wall. In N. bacillaris, the cleaved mother cell wall gradually degenerated and was not observed in the next cell cycle. In contrast, M. geminata daughter cells entered the growth phase of the next cell cycle bearing the mother and grandmother cell walls, causing the uncovered portion of the plane of division to bulge outward. Such a delay in the degeneration and shedding of the mother cell wall probably led to the development of binary fission and budding.  相似文献   

13.
Summary Two types of filamentous mutants were derived from the unicellular blue-green alga,Agmenellum, by brief exposure to nitrosoguanidine. The parent exhibits constrictive division analogous to that of the enteric bacteria. The septate mutant exhibits septal division which is almost identical to that observed in all filamentous blue-green algae thus far described. In this mutant, the two outer wall layers fail to invaginate, leaving the daughter cells connected. The coenocytic filamentous mutant divides sporadically by both of these methods. The nuclear region of this mutant appears continuous throughout the length of the filament. It is suggested that the non-septate mutant is impaired in the coordination of cytological events leading to cell division.  相似文献   

14.
Charophytes are a highly endangered group of algae. In the Baltic Sea, the number of species, distribution area and biomass of charophytes have significantly decreased in recent decades. Although eutrophication triggers their initial decline, the mechanism of the final extinction of charophyte populations is not fully understood. An in situ experiment was performed to study the role of the mesoherbivores Idotea baltica, Gammarus oceanicus and Palaemon adspersus in the decline of charophytes in the north-eastern Baltic Sea. Invertebrate grazing showed a clear seasonality: grazing pressure was low in April, moderate in July, and high in October. Grazing on charophytes by P. adspersus was negligible, whereas I. baltica and G. oceanicus significantly reduced the biomass of charophytes in the field. Low photosynthetic activity (high decomposition rate) of the charophytes favoured grazing. The invertebrates studied preferred Chara tomentosa to C. connivens. Low consumption of C. connivens may reflect its non-native origin. The experiment suggests that, under moderately eutrophic conditions, grazers are not likely to control charophyte populations. However, grazers have the potential to eliminate charophytes in severely eutrophic systems under the stress of filamentous algae.Communicated by H.D. Franke  相似文献   

15.
Molecular phylogenetic analysis of the conjugating green algae (Class Zygnemophyceae) using nuclear (SSU rDNA) and chloroplast (rbcL) gene sequences has resolved hypotheses of relationship at the class, order, and family levels, but several key questions will require data from additional genes. Based on SSU and rbcL sequences, the Zygnemophyceae and Desmidiales are monophyletic, and families of placoderm desmids are distinct clades (Desmidiaceae, Peniaceae, Closteriaceae, and Gonatozygaceae). In contrast, the Zygnemataceae and Mesotaeniaceae are paraphyletic, although whether these two traditional families constitute a clade is uncertain. In addition, relationships of genera within families have proven resistant to resolution with these two oft‐used genes. We have sequenced the coxIII gene from the mitochondrial genome to address some of these ambiguous portions of the phylogeny of conjugating green algae. The coxIII gene is more variable than rbcL or SSU rDNA and offers greater resolving power for relationships of genera. We present preliminary analyses of coxIII sequences from each of the traditional families of Zygnemophyceae and contrast the resulting topologies with those derived from nuclear and chloroplast genes.  相似文献   

16.
Summary The origin of a cell wall was an event of fundamental importance in the evolution of plants. In the green algae, cell walls apparently had independent origins in at least three lines of evolution. In this paper, the components of the cell wall were determined and compared in four filamentous green algae representing the charophycean, chlorophycean and ulvacean evolutionary lines. The walls of all four have hydroxyproline-containing proteins which separate into five or six bands upon SDS gel electrophoresis. Variation does exist, with the charophyte possessing fast moving electrophoretic bands and high hydroxyproline content, the chlorophytes having intermediate movement of bands and lower hydroxyproline content, and the ulvacean representative possessing slow moving bands and a very low, if not questionable, hydroxyproline and saccharide content. Qualitative and quantitative estimates of wall proteins and sugars have been determined and compared. A hypothetical scheme of cell wall evolution based on these data, those of previous analyses, and recent phylogenetic schemes is presented. Although sound conclusions cannot be made until more information is available, the scheme might help to emphasize the areas most in need of additional research.This work was supported by National Science Foundation Grant DEB 78-03554.  相似文献   

17.
The conjugating green algae represent a lineage of charophyte green algae known for their structural diversity and unusual mode of sexual reproduction, conjugation. These algae are ubiquitous in freshwater environments, where they are often important primary producers, but few studies have investigated evolutionary relationships in a molecular systematic context. A 109‐taxon data set consisting of three gene fragments (two from the chloroplast and one from the mitochondrial genome) was used to estimate the phylogeny of the genera of the conjugating green algae. Maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) were used to estimate relationships from the 4,047 alignable nucleotides. This study confirmed the polyphyly of the Zygnemataceae and Mesotaeniaceae with respect to one another. The Peniaceae were determined to be paraphyletic, and two genera traditionally classified among the Zygnematales appear to belong to the lineage that gave rise to the Desmidiales. Six genera, Euastrum, Cosmarium, Cylindrocystis, Mesotaenium, Spondylosium, and Staurodesmus, were polyphyletic in this analysis. These findings have important implications for the evolution of structural characteristics in the group and will require some taxonomic changes. More work will be required to delineate lineages of Zygnematales in particular and to identify structural synapomorphies for some of the newly identified clades.  相似文献   

18.

Some algae are known to grow on shellfish shells. Most of these have been reported in aquatic environments. The species specificity for substrate shells varies, and some algae grow only on the shells of a certain species of shellfish, such as Pseudocladophora conchopheria (Cladophorales, Ulvophyceae) on Lunella coreensis (Trochida, Gastropoda). There are very few reports of algae that grow on land snails. In this study, we discovered green algae growing on the shells of six species of door snails (Clausiliidae) from nine localities in Japan. These green algae formed a green mat composed of thalli embedded in the extracellular matrix. The thallus was composed of aggregated oval cells and peripheral branched filaments. The cells possessed a single parietal chloroplast with a pyrenoid surrounded by two starch sheaths and transversed by a thylakoid. Oil droplets in the cell and ring-like structures on the cell wall surface were frequently observed. The 18S rDNA sequences of all shell-attached algae on different clausiliid species from different localities were almost identical and formed a new clade in the family Kornmanniaceae (Ulvales, Ulvophyceae). No other algae forming visible colonies on the clausiliid shell were found. These findings indicate the presence of specificity between the alga and clausiliid shells. Based on the results of morphological observation and molecular phylogenetic analysis, we propose a new genus and new species of shell-attached green alga, Annulotesta cochlephila.

  相似文献   

19.
研究于2019年冬季对赤水河流域开展刚毛藻多样性调查,共设计采样点38个,覆盖赤水河上、中、下游。调查发现:21个采样位点分布有刚毛藻目藻类,其中19个位点有刚毛藻分布。基于核糖体小亚基(SSU rDNA)、核糖体大亚基(LSU rDNA)和内转录间隔区(ITS)对采集样品进行系统发育分析,结果显示:(1)赤水河流域刚毛藻多样性较高,且该流域上、中、下游均有刚毛藻分布;(2)目前淡水刚毛藻类群包含至少10个支系,赤水河流域采集到的刚毛藻覆盖其中6个支系(分别是clade 1、clade 2、clade 4、clade 7、clade 9和clade 10);(3)相比基于SSU+LSU双分子标记构建的系统进化树,基于SSU+ITS+LSU三分子标记构建的进化树各支系支持度更高,可以较有效地将淡水刚毛藻不同支系区分开来。研究较好地展示了冬季赤水河流域刚毛藻的广泛分布及其分子多样性,丰富了中国淡水丝状绿藻的分类研究,也为赤水河段的水生态环境保护提供了基础数据支持。  相似文献   

20.
《Journal of phycology》2001,37(Z3):31-31
Lewandowski, J. D. & Delwiche, C. F. Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA The evolutionary relationships of the algal genera Mesostigma and Chaetosphaeridium to other algae and land plants are currently controversial. A close evolutionary relationship between land plants and two orders of the charophycean algae, the Charales and Coleochaetales, is supported by morphological, ultrastructural, biochemical, genomic, and phylogenetic data. A number of phylogenetic analyses support a monophyletic Coleochaetales, with Coleochaete and Chaetosphaeridum as sister groups. Mesostigma was traditionally viewed as a member of the prasinophytes and has recently been considered as a lineage possibly basal to the charophycean algae, or sister to all green algae. By contrast, recent analyses of small subunit ribosomal RNA gene sequences have been interpreted as evidence of an alternative classification with Mesostigma forming a clade with Chaetosphaeridium to the exclusion of Coleochaete and other charophycean lineages. The shared presence of introns in two chloroplast tRNA genes (tRNAAla and tRNAIle) among charophytes Coleochaete and Nitella and the liverwort Marchantia supports a monophyletic group containing the Coleochaetales, the Charales, and land plants. Through isolation and sequence analysis of the tRNAAla and tRNAIle genes in Chaetosphaeridium, we have identified introns similar in sequence and position to those found in Coleochaete. These data and the published absence of these introns in Mesostigma lend new support to a monophyletic Coleochaetales including the genera Coleochaete and Chaetosphaeridium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号