首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of molecules involved in tumor initiation and progression is fundamental for understanding disease’s biology and, as a consequence, for the clinical management of patients. In the present work we will describe an optimized proteomic approach for the identification of molecules involved in the progression of Chronic Lymphocytic Leukemia (CLL). In detail, leukemic cell lysates are resolved by 2-dimensional Electrophoresis (2DE) and visualized as “spots” on the 2DE gels. Comparative analysis of proteomic maps allows the identification of differentially expressed proteins (in terms of abundance and post-translational modifications) that are picked, isolated and identified by Mass Spectrometry (MS). The biological function of the identified candidates can be tested by different assays (i.e. migration, adhesion and F-actin polymerization), that we have optimized for primary leukemic cells.  相似文献   

2.
Most techniques used to study small molecules, such as pharmaceutical drugs or endogenous metabolites, employ tissue extracts which require the homogenization of the tissue of interest that could potentially cause changes in the metabolic pathways being studied1. Mass spectrometric imaging (MSI) is a powerful analytical tool that can provide spatial information of analytes within intact slices of biological tissue samples1-5. This technique has been used extensively to study various types of compounds including proteins, peptides, lipids, and small molecules such as endogenous metabolites. With matrix-assisted laser desorption/ionization (MALDI)-MSI, spatial distributions of multiple metabolites can be simultaneously detected. Herein, a method developed specifically for conducting untargeted metabolomics MSI experiments on legume roots and root nodules is presented which could reveal insights into the biological processes taking place. The method presented here shows a typical MSI workflow, from sample preparation to image acquisition, and focuses on the matrix application step, demonstrating several matrix application techniques that are useful for detecting small molecules. Once the MS images are generated, the analysis and identification of metabolites of interest is discussed and demonstrated. The standard workflow presented here can be easily modified for different tissue types, molecular species, and instrumentation.  相似文献   

3.
Metabolites are the end products of cellular vital activities and can reflect the state of cellular to a certain extent. Rapid change of metabolites and the low abundance of signature metabolites cause difficulties in single-cell detection, which is a great challenge in single-cell metabolomics analysis. Mass spectrometry (MS) is a powerful tool that uniquely suited to detect intracellular small-molecule metabolites and has shown good application in single-cell metabolite analysis. In this mini-review, we describe three types of emerging technologies for MS-based single-cell metabolic analysis in recent years, including nano-ESI-MS based single-cell metabolomics analysis, high-throughput analysis via flow cytometry, and cellular metabolic imaging analysis. These techniques provide a large amount of single-cell metabolic data, allowing the potential of MS in single-cell metabolic analysis is gradually being explored and is of great importance in disease and life science research.  相似文献   

4.
Proteomic research facilities and laboratories are facing increasing demands for the integration of biological data from multiple ‘‐OMICS’ approaches. The aim to fully understand biological processes requires the integrated study of genomes, proteomes and metabolomes. While genomic and proteomic workflows are different, the study of the metabolome overlaps significantly with the latter, both in instrumentation and methodology. However, chemical diversity complicates an easy and direct access to the metabolome by mass spectrometry (MS). The present review provides an introduction into metabolomics workflows from the viewpoint of proteomic researchers. We compare the physicochemical properties of proteins and peptides with metabolites/small molecules to establish principle differences between these analyte classes based on human data. We highlight the implications this may have on sample preparation, separation, ionisation, detection and data analysis. We argue that a typical proteomic workflow (nLC‐MS) can be exploited for the detection of a number of aliphatic and aromatic metabolites, including fatty acids, lipids, prostaglandins, di/tripeptides, steroids and vitamins, thereby providing a straightforward entry point for metabolomics‐based studies. Limitations and requirements are discussed as well as extensions to the LC‐MS workflow to expand the range of detectable molecular classes without investing in dedicated instrumentation such as GC‐MS, CE‐MS or NMR.  相似文献   

5.
Mass spectrometry plays a key role in drug metabolite identification, an integral part of drug discovery and development. The development of high-resolution (HR) MS instrumentation with improved accuracy and stability, along with new data processing techniques, has improved the quality and productivity of metabolite identification processes. In this minireview, HR-MS-based targeted and non-targeted acquisition methods and data mining techniques (e.g. mass defect, product ion, and isotope pattern filters and background subtraction) that facilitate metabolite identification are examined. Methods are presented that enable multiple metabolite identification tasks with a single LC/HR-MS platform and/or analysis. Also, application of HR-MS-based strategies to key metabolite identification activities and future developments in the field are discussed.  相似文献   

6.
Human physiological activities and pathological changes arise from the coordinated interactions of multiple molecules. Mass spectrometry (MS)-based multi-omics and MS imaging (MSI)-based spatial omics are powerful methods used to investigate molecular information related to the phenotype of interest from homogenated or sliced samples, including the qualitative, relative quantitative and spatial distributions. Molecular network strategy provides efficient methods to help us understand and mine the biological patterns behind the phenotypic data. It illustrates and combines various relationships between molecules, and further performs the molecule identification and biological interpretation. Here, we describe the recent advances of network-based analysis and its applications for different biological processes, such as, obesity, central nervous system diseases, and environmental toxicology.  相似文献   

7.
生物质谱分析的研究进展及临床应用   总被引:1,自引:0,他引:1  
质谱分析技术已应用于化学、化工、环境、能源、医药、运动医学、刑侦科学、生命科学、材料科学等各个领域。阐述目前生物质谱技术的类型、原理以及在医学领域中的应用,进而分析质谱技术在未来发展的前景。  相似文献   

8.
Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms.  相似文献   

9.
10.
Solid-support based assays offer several advantages that are not normally available in solution. Enzymes that are anchored on gold surfaces can interact with several different molecules, opening the way to high throughput array format based assays. In this scenario, surface plasmon resonance (SPR) and mass spectrometry (MS) investigations have often been applied to analyze the interaction between immobilized enzyme and its substrate molecules in a tag-free environment. Here, we propose a SPR-MS combined experimental approach aimed at studying insulin degrading enzyme (IDE) immobilized onto gold surfaces and its ability to interact with insulin. The latter is delivered by a microfluidic system to the IDE functionalized surface and the activity of the immobilized enzyme is verified by atmospheric pressure/matrix assisted laser desorption ionization (AP/MALDI) MS analysis. The SPR experiments allow the calculation of the kinetic constants involved for the interaction between immobilized IDE and insulin molecules and evidence of IDE conformational change upon insulin binding is also obtained.  相似文献   

11.
Fei Yu 《Biomarkers》1999,4(1):85-92
Hydroxylated DNA basesare one type of oxygen free radical-induced damage to DNA. Such damage has been implicated in the process of carcinogenesis, and the levels of hydroxylated DNA bases may serve as a marker of cancer risk in humans. Measurement of oxidative DNA damage can be hampered by the ease with which artifactual oxidative DNA damage can be induced via sample processing. In this report we describe convenient room temperature derivatization and stability of 5-hydroxy-2'-deoxycytidine (5-OHdCyd) and 5-hydroxymethyl-2'-deoxyuridine (5-OHmdU) using GC/MS analysis. The derivatization reagent was N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) containing 1% trimethylchloro-silane:acetonitrile, 2:1. This method avoids use of acid and is much milder than previously reported derivatization conditions which typically involve heating above 100C for at least 20 min. Although heating has been reported to be problematic, the calculated levels of 5-OHdCyd and 5-OHmdU in enzymatically-hydrolysed calf thymus DNA were very similar in our hands with and without heating the sample for 20 min. As an example of the technique, comparison of 5-OHdCyd and 5-OHmdU levels in calf thymus DNA indicated relatively higher endogenous levels of 5-OHdCyd. In DNA treated with hydrogen peroxide and ferric chloride, however, the levels of 5-OHmdU increased much more than that of 5-OHdCyd. In addition to these hydroxylated derivatives of deoxycytidine and thymidine, the method also appears to work well with 8-oxoguanine, 4,6-diamino-5-(formylamino)pyrimidine, and 5-methyl-2'-deoxycytidine. This method may therefore be useful with a variety of modified DNA bases and nucleosides.  相似文献   

12.
MS imaging (MSI) is a remarkable new technology that enables us to determine the distribution of biological molecules present in tissue sections by direct ionization and detection. This technique is now widely used for in situ imaging of endogenous or exogenous molecules such as proteins, lipids, drugs and their metabolites, and it is a potential tool for pathological analysis and the investigation of disease mechanisms. MSI is also thought to be a technique that could be used for biomarker discovery with spatial information. The application of MSI to the study of endogenous metabolites has received considerable attention because metabolites are the result of the interactions of a system's genome with its environment and a total set of these metabolites more closely represents the phenotype of an organism under a given set of conditions. Recent studies have suggested the importance of in situ metabolite imaging in biological discovery and biomedical applications, but several issues regarding the technical application limits of MSI still remained to be resolved. In this review, we describe the capabilities of the latest MSI techniques for the imaging of endogenous metabolites in biological samples, and also discuss the technical problems and new challenges that need to be addressed for effective and widespread application of MSI in both preclinical and clinical settings.  相似文献   

13.
Urine is an ideal source of materials to search for potential disease‐related biomarkers as it is produced by the affected tissues and can be easily obtained by noninvasive methods. 2‐DE‐based proteomic approach was used to better understand the molecular mechanisms of injury induced by fluoride (F?) and define potential biomarkers of dental fluorosis. Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F? for 60 days (n = 15/group). During the experimental period, the animals were kept individually in metabolic cages, to analyze the water and food consumption, as well as fecal and urinary F? excretion. Urinary proteome profiles were examined using 2‐DE and Colloidal Coomassie Brilliant Blue staining. A dose‐response regarding F? intake and excretion was detected. Quantitative intensity analysis revealed 8, 11, and 8 significantly altered proteins between control vs. 5 ppm F?, control vs. 50 ppm F? and 5 ppm F? vs. 50 ppm F? groups, respectively. Two proteins regulated by androgens (androgen‐regulated 20‐KDa protein and α‐2μ‐globulin) and one related to detoxification (aflatoxin‐B1‐aldehyde‐reductase) were identified by MALDI‐TOF‐TOF MS/MS. Thus, proteomic analysis can help to better understand the mechanisms underlying F? toxicity, even in low doses. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:8–14 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20353  相似文献   

14.
An emphasis of current proteomic research is the validation of plasma protein biomarkers. The process of blood collection itself is critical to the accuracy and reproducibility of quantitative biomarker assays. We have developed selected reaction monitoring (SRM) assays to analyse thirteen abundant plasma proteins and evaluated the impact of three different blood collection tubes on the levels of these proteins. We also assessed the implications of the time taken to analyse plasma samples by evaluating the recovery of these proteins. We showed that SRM detects minor differences in the levels of some proteins which can be attributed to collection tube type. The average recovery for 12 of 18 assays was higher for proteins that were collected in tubes containing protease inhibitors compared to conventional collection tubes. For five of the assays, the differential recovery was statistically significant. Delaying MS analysis of a freeze‐thawed sample for 1 hour showed greatly reduced recovery of these analytes; however differences attributed to tube type were only evident at the baseline timepoint. Finally, we assessed the natural variation of circulating levels of these proteins in a cohort of seven healthy individuals. This study provides useful information for researchers contemplating blood collection for undertaking protein biomarker studies.  相似文献   

15.
Identification of proteins by mass spectrometry (MS) is an essential step in pro- teomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when high- throughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.  相似文献   

16.
Lipoxygenases (LOXs) regulate inflammation through the production of a variety of molecules whose specific downstream effects are not entirely understood due to the complexity of the inflammation pathway. The generation of these biomolecules can potentially be inhibited and/or allosterically regulated by small synthetic molecules. The current work describes the first mass spectrometric high-throughput method for identifying small molecule LOX inhibitors and LOX allosteric effectors that change the substrate preference of human lipoxygenase enzymes. Using a volatile buffer and an acid-labile detergent, enzymatic products can be directly detected using high-performance liquid chromatography–mass spectrometry (HPLC–MS) without the need for organic extraction. The method also reduces the required enzyme concentration compared with traditional ultraviolet (UV) absorbance methods by approximately 30-fold, allowing accurate binding affinity measurements for inhibitors with nanomolar affinity. The procedure was validated using known LOX inhibitors and the allosteric effector 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13-HODE).  相似文献   

17.
ADAM17, which is also known as TNFα-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.  相似文献   

18.
Imaging mass spectrometry (MS) allows to monitor the spatial distribution and abundance of endogenous and administered compounds present within tissue specimens. Several different but complementary imaging MS technologies have been developed allowing the analysis of a wide variety of compounds including inorganic elementals, metabolites, lipids, peptides, proteins and xenobiotics with spatial resolutions from micrometer to nanometer scales. In the past decade, an enormous collective body of work has been done to develop and improve the imaging MS technology. This article gives a historical perspective, an overview of the principle and status of the technology and lists the main fields of applications. It also enumerates some of the critical challenges we need to collectively address for imaging MS to be considered a mainstream analytical method.  相似文献   

19.
Mass spectrometry (MS) has been a major driver for metabolomics, and gas chromatography (GC)-MS has been one of the primary techniques used for microbial metabolomics. The use of liquid chromatography (LC)-MS has however been limited, but electrospray ionization (ESI) is very well suited for ionization of microbial metabolites without any previous derivatization needed. To address the capabilities of ESI-MS in detecting the metabolome of Saccharomyces cerevisiae, the in silico metabolome of this organism was used as a template to present a theoretical metabolome. This showed that in combination with the specificity of MS up to 84% of the metabolites can be identified in a high mass accuracy ESI-spectrum. A total of 66 metabolites were systematically analyzed by positive and negative ESI-MS/MS with the aim of initiating a spectral library for ESI of microbial metabolites. This systematic analysis gave insight into the ionization and fragmentation characteristics of the different metabolites. With this insight, a small study of metabolic footprinting with ESI-MS demonstrated that biological information can be extracted from footprinting spectra. Statistical analysis of the footprinting data revealed discriminating ions, which could be assigned using the in silico metabolome. By this approach metabolic footprinting can advance from a classification method that is used to derive biological information based on guilt-by-association, to a tool for extraction of metabolic differences, which can guide new targeted biological experiments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
A great challenge in functional or interaction proteomics is to map protein networks and establish a functional relationship between expressed proteins and their effects on cellular processes. These cellular processes can be studied by characterizing binding partners to a "bait" protein against a complex background of other molecules present in cells, tissues, or biological fluids. This so-called ligand fishing process can be performed by combining surface plasmon resonance biosensors with MS. This combination generates a unique and automated method to quantify and characterize biomolecular interactions, and identify the interaction partners. A general problem in chip-based affinity separation systems is the large surface-to-volume ratio of the fluidic system. Extreme care, therefore, is required to avoid nonspecific adsorption, resulting in losses of the target protein and carry-over during the affinity purification process, which may lead to unwanted signals in the final MS analysis and a reduction in sensitivity. In this study, carry-over of protein and low-molecular weight substances has been investigated systematically and cleaning strategies are presented. Furthermore, it is demonstrated that by the introduction of colloidal particles as a capturing and transporting agent, the recovery yield of the affinity-purified ligand could be improved nearly twofold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号