首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 523 毫秒
1.
In the sexually deceptive orchid genus Ophrys , reproductive isolation is based on the specific attraction of males of a single pollinator species by mimicking the female species-specific sex pheromone. Changes in the odor composition can lead to hybridization and speciation by the attraction of a new pollinator that acts as an isolation barrier toward other sympatrically occurring Ophrys species. On Sardinia, we investigated the evolutionary origin of two sympatrically occurring endemic species, Ophrys chestermanii and O. normanii , which are both pollinated by males of the cuckoo bumblebee Bombus vestalis . Chemical and electrophysiological analyses of floral scent and genetic analyses with amplified fragment length polymorphisms and plastid-markers clearly showed that O. normanii is neither a hybrid nor a hybrid species. The two species evolved from different ancestors, viz. O. normanii from O. tenthredinifera and O. chestermanii from O. annae , and converged to the same pollinator attracted by the same bouquet of polar compounds. In spite of sympatry, pollinator sharing and overlapping blooming periods, no evidence has been obtained for gene flow between O. chestermanii and O. normanii indicating an unusual case among sexually deceptive orchids in which postmating rather than premating reproductive isolation mechanisms strongly prevent interspecific gene flow.  相似文献   

2.
Sexually deceptive orchids from the genus Ophrys attract their pollinators primarily through the chemical mimicry of female hymenopteran sex pheromones, thereby deceiving males into attempted matings with the orchid labellum. Floral odor traits are crucial for the reproductive success of these pollinator-limited orchids, as well as for maintaining reproductive isolation through the attraction of specific pollinators. We tested for the signature of pollinator-mediated selection on floral odor by comparing intra and interspecific differentiation in odor compounds with that found at microsatellite markers among natural populations. Three regions from southern Italy were sampled. We found strong floral odor differentiation among allopatric populations within species, among allopatric species and among sympatric species. Population differences in odor were also reflected in significant variation in the attractivity of floral extracts to the pollinator, Colletes cunicularius. Odor compounds that are electrophysiologically active in C. cunicularius males, especially alkenes, were more strongly differentiated among conspecific populations than nonactive compounds in the floral odor. In marked contrast to these odor patterns, there was limited population or species level differentiation in microsatellites (FST range 0.005 to 0.127, mean FST 0.075). We propose that the strong odor differentiation and lack of genetic differentiation among sympatric taxa indicates selection imposed by the distinct odor preferences of different pollinating species. Within species, low FST values are suggestive of large effective population sizes and indicate that divergent selection rather than genetic drift accounts for the strong population differentiation in odor. The higher differentiation in active versus non-active odor compounds suggests that divergent selection among orchid populations may be driven by local pollinator preferences for those particular compounds critical for pollinator attraction.  相似文献   

3.
Ayasse M  Stökl J  Francke W 《Phytochemistry》2011,72(13):1667-1677
Sexually deceptive orchids mimic females of their pollinator species to attract male insects for pollination. Pollination by sexual deception has independently evolved in European, Australian, South African, and South American orchid taxa. Reproductive isolation is mainly based on pre-mating isolation barriers, the specific attraction of males of a single pollinator species, mostly bees, by mimicking the female species-specific sex-pheromone. However, in rare cases post-mating barriers have been found. Sexually deceptive orchids are ideal candidates for studies of sympatric speciation, because key adaptive traits such as the pollinator-attracting scent are associated with their reproductive success and with pre-mating isolation.During the last two decades several investigations studied processes of ecological speciation in sexually deceptive orchids of Europe and Australia. Using various methods like behavioural experiments, chemical, electrophysiological, and population-genetic analyses it was shown that minor changes in floral odour bouquets might be the driving force for pollinator shifts and speciation events. New pollinators act as an isolation barrier towards other sympatrically occurring species. Hybridization occurs because of similar odour bouquets of species and the overlap of flowering periods. Hybrid speciation can also lead to the displacement of species by the hybrid population, if its reproductive success is higher than that in the parental species.  相似文献   

4.

Background and Aims

In the sexually deceptive Ophrys genus, species isolation is generally considered ethological and occurs via different, specific pollinators, but there are cases in which Ophrys species can share a common pollinator and differ in pollen placement on the body of the insect. In that condition, species are expected to be reproductively isolated through a pre-mating mechanical barrier. Here, the relative contribution of pre- vs. post-mating barriers to gene flow among two Ophrys species that share a common pollinator and can occur in sympatry is studied.

Methods

A natural hybrid zone on Sardinia between O. iricolor and O. incubacea, sharing Andrena morio as pollinator, was investigated by analysing floral traits involved in pollinator attraction as odour extracts both for non-active and active compounds and for labellum morphology. The genetic architecture of the hybrid zone was also estimated with amplified fragment length polymorphism (AFLP) markers, and pollination fitness and seed set of both parental species and their hybrids in the sympatric zone were estimated by controlled crosses.

Key Results

Although hybrids were intermediate between parental species in labellum morphology and non-active odour compounds, both parental species and hybrids produced a similar odour bouquet for active compounds. However, hybrids produced significantly lower fruit and seed set than parental species, and the genetic architecture of the hybrid zone suggests that they were mostly first-generation hybrids.

Conclusions

The two parental species hybridize in sympatry as a consequence of pollinator overlap and weak mechanical isolation, but post-zygotic barriers reduce hybrid frequency and fitness, and prevent extensive introgression. These results highlight a significant contribution of late post-mating barriers, such as chromosomal divergence, for maintaining reproductive isolation, in an orchid group for which pre-mating barriers are often considered predominant.Key words: AFLP markers, floral scent variation, hybrid zone, hybrid fitness, Ophrys iricolor, Ophrys incubacea, reproductive isolation, sexual deception  相似文献   

5.
Divergent selection by pollinators can bring about strong reproductive isolation via changes at few genes of large effect. This has recently been demonstrated in sexually deceptive orchids, where studies (1) quantified the strength of reproductive isolation in the field; (2) identified genes that appear to be causal for reproductive isolation; and (3) demonstrated selection by analysis of natural variation in gene sequence and expression. In a group of closely related Ophrys orchids, specific floral scent components, namely n‐alkenes, are the key floral traits that control specific pollinator attraction by chemical mimicry of insect sex pheromones. The genetic basis of species‐specific differences in alkene production mainly lies in two biosynthetic genes encoding stearoyl–acyl carrier protein desaturases (SAD) that are associated with floral scent variation and reproductive isolation between closely related species, and evolve under pollinator‐mediated selection. However, the implications of this genetic architecture of key floral traits on the evolutionary processes of pollinator adaptation and speciation in this plant group remain unclear. Here, we expand on these recent findings to model scenarios of adaptive evolutionary change at SAD2 and SAD5, their effects on plant fitness (i.e., offspring number), and the dynamics of speciation. Our model suggests that the two‐locus architecture of reproductive isolation allows for rapid sympatric speciation by pollinator shift; however, the likelihood of such pollinator‐mediated speciation is asymmetric between the two orchid species O. sphegodes and O. exaltata due to different fitness effects of their predominant SAD2 and SAD5 alleles. Our study not only provides insight into pollinator adaptation and speciation mechanisms of sexually deceptive orchids but also demonstrates the power of applying a modeling approach to the study of pollinator‐driven ecological speciation.  相似文献   

6.
In plants, pollinator adaptation is considered to be a major driving force for floral diversification and speciation. However, the genetic basis of pollinator adaptation is poorly understood. The orchid genus Ophrys mimics its pollinators' mating signals and is pollinated by male insects during mating attempts. In many species of this genus, chemical mimicry of the pollinators' pheromones, especially of alkenes with different double-bond positions, plays a key role for specific pollinator attraction. Thus, different alkenes produced in different species are probably a consequence of pollinator adaptation. In this study, we identify genes that are likely involved in alkene biosynthesis, encoding stearoyl-acyl carrier protein (ACP) desaturases (SAD), in three closely related Ophrys species, O. garganica, O. sphegodes, and O. exaltata. Combining floral odor and gene expression analyses, two SAD homologs (SAD1/2) showed significant association with the production of (Z)-9- and (Z)-12-alkenes that were abundant in O. garganica and O. sphegodes, supporting previous biochemical data. In contrast, two other newly identified homologs (SAD5/6) were significantly associated with (Z)-7-alkenes that were highly abundant only in O. exaltata. Both molecular evolutionary analyses and pollinator preference tests suggest that the alkenes associated with SAD1/2 and SAD5/6 are under pollinator-mediated divergent selection among species. The expression patterns of these genes in F(1) hybrids indicate that species-specific expression differences in SAD1/2 are likely due to cis-regulation, while changes in SAD5/6 are likely due to trans-regulation. Taken together, we report a genetic mechanism for pollinator-mediated divergent selection that drives adaptive changes in floral alkene biosynthesis involved in reproductive isolation among Ophrys species.  相似文献   

7.
Integrating floral scent, pollination ecology and population genetics   总被引:1,自引:1,他引:0  
1 . Floral scent is a key factor in the attraction of pollinators. Despite this, the role of floral scent in angiosperm speciation and evolution remains poorly understood. Modern population genetic approaches when combined with pollination ecology can open new opportunities for studying the evolutionary role of floral scent.
2 . A framework of six hypotheses for the application of population genetic tools to questions about the evolutionary role of floral scent is presented. When floral volatile chemistry is linked to pollinator attraction we can analyse questions such as: Does floral volatile composition reflect plant species boundaries? Can floral scent facilitate or suppress hybridization between taxa? Can the attraction of different pollinators influence plant mating systems and pollen-mediated gene flow? How is population genetic structure indirectly influenced by floral scent variation?
3 . The application of molecular tools in sexually deceptive orchids has confirmed that volatile composition reflects species boundaries, revealed the role of shared floral odour in enabling hybridization, confirmed that the sexual attraction mediated by floral odour has implications for pollen flow and population genetic structure and provided examples of pollinator-mediated selection on floral scent variation. Interdisciplinary studies to explore links between floral volatile variation, ecology and population genetics are rare in other plant groups.
4 . Ideal study systems for future floral scent research that incorporate population genetics will include closely related taxa that are morphologically similar, sympatric and co-flowering as well as groups that display wide variation in pollination mechanisms and floral volatiles.  相似文献   

8.
Natural hybridization is widespread among food-deceptive orchids, whereas hybridization between deceptive and rewarding species is less common among Mediterranean species and its evolutionary consequences remain under-investigated. Here, we examine the morphological variation in floral traits, pollination success and demographic dynamics of natural hybrids between the widespread nectar-rewarding Anacamptis fragrans and the Mallorca endemic, food-deceptive A. robusta. We confirmed the status of hybrids using ribosomal DNA and assessed their maternal contribution using length polymorphism in the plastid tRNALEU intron. Genetic analyses confirmed that hybridization occurred in both directions, but the hybrids were morphologically closer in floral metric characters to A. fragrans and exhibited reduced among-individual variation in floral traits. No obvious secreting papillae were present in the hybrid spur, which more closely resembled the spur of non-rewarding A. robusta, reinforcing field observations that hybrids were probably nectarless. Compared with both rewarding and deceptive parents, the hybrids were less attractive for pollinators, most likely because of the absence of significant reward and of their combination of contrasting parental floral advertisements. In spite of its low pollination success, the hybrid population is presently expanding alongside the endemic A. robusta, suggesting that it follows the demographic dynamics of the parental species.  相似文献   

9.
High pollinator specificity and the potential for simple genetic changes to affect pollinator attraction make sexually deceptive orchids an ideal system for the study of ecological speciation, in which change of flower odour is likely important. This study surveys reproductive barriers and differences in floral phenotypes in a group of four closely related, coflowering sympatric Ophrys species and uses a genotyping‐by‐sequencing (GBS) approach to obtain information on the proportion of the genome that is differentiated between species. Ophrys species were found to effectively lack postpollination barriers, but are strongly isolated by their different pollinators (floral isolation) and, to a smaller extent, by shifts in flowering time (temporal isolation). Although flower morphology and perhaps labellum coloration may contribute to floral isolation, reproductive barriers may largely be due to differences in flower odour chemistry. GBS revealed shared polymorphism throughout the Ophrys genome, with very little population structure between species. Genome scans for FST outliers identified few markers that are highly differentiated between species and repeatable in several populations. These genome scans also revealed highly differentiated polymorphisms in genes with putative involvement in floral odour production, including a previously identified candidate gene thought to be involved in the biosynthesis of pseudo‐pheromones by the orchid flowers. Taken together, these data suggest that ecological speciation associated with different pollinators in sexually deceptive orchids has a genic rather than a genomic basis, placing these species at an early phase of genomic divergence within the ‘speciation continuum’.  相似文献   

10.
ABSTRACT: BACKGROUND: In food-deceptive orchids of the genera Anacamptis, Neotinea and Orchis floral isolation has been shown to be weak, whereas late-acting reproductive barriers are mostly strong, often restricting hybridization to the F1 generation. Only in a few species hybridization extends beyond the F1 generation, giving rise to hybrid swarms. However, little is known about the abundance of later-generation hybrids and what factors drive their occurrence in hybrid populations. In this study, molecular analyses were combined with detailed morphological measurements in a hybrid population of two closely related Orchis species (Orchis militaris and O. purpurea) to investigate the hypothesis that the abundance of later-generation hybrids is driven by changes in floral characters after hybridization that exert selective pressures that in turn affect hybridization. RESULTS: Both the molecular and morphological data point to extensive genetic and morphological homogenization and asymmetric introgression. Estimating genomic clines from the multi-locus genotype data and testing for deviation from neutrality revealed that 30 out of 113 (27%) AFLP markers significantly deviated from neutral expectations. Plants with large floral displays or plant with flowers that resembled more O. purpurea had higher female fitness than plants with small floral displays or plants with flowers resembling more O. militaris, suggesting that directional selection may have contributed to the observed patterns of introgression. CONCLUSIONS: These results indicate that in closely related orchid species hybridization and gene introgression may be partly driven by selection for floral traits of one of the parental types. However, because some pure individuals were still present in the studied population, the parental species appeared to be sufficiently isolated to survive the challenge of sympatry.  相似文献   

11.
The Mediterranean orchid Anacamptis papilionacea , despite showing a typical food-deceptive floral display, has also been reported to frequently attract male pollinators, suggesting a potentiality for sexual attraction. In a survey from a southern Italian population of A. papilionacea and their hybrids with Anacamptis morio , we collected 37 pollinators belonging to five bee species carrying 126 orchid pollinia. The main pollinator of A. papilionacea was Anthophora crinipes male (48.6%), but the number of females was not negligible (22.9%). We also found pollinator sharing between the hybrid and the parental species. Our findings confirm that, contrary to other food-deceptive species, A. papilionacea mainly attracts male insects, but also that, in contrast to sexually deceptive species, this attraction is not specific. We suggest that A. papilionacea adopts a complex mix of food and sexually deceptive pollination and could represent a helpful model for studying the transition between different pollination strategies.  相似文献   

12.
Local adaptation to different pollinators is considered one of the possible initial stages of ecological speciation as reproductive isolation is a by‐product of the divergence in pollination systems. However, pollinator‐mediated divergent selection will not necessarily result in complete reproductive isolation, because incipient speciation is often overcome by gene flow. We investigated the potential of pollinator shift in the sexually deceptive orchids Ophrys sphegodes and Ophrys exaltata and compared the levels of floral isolation vs. genetic distance among populations with contrasting predominant pollinators. We analysed floral hydrocarbons as a proxy for floral divergence between populations. Floral adoption of pollinators and their fidelity was tested using pollinator choice experiments. Interpopulation gene flow and population differentiation levels were estimated using AFLP markers. The Tyrrhenian O. sphegodes population preferentially attracted the pollinator bee Andrena bimaculata, whereas the Adriatic O. sphegodes population exclusively attracted A. nigroaenea. Significant differences in scent component proportions were identified in O. sphegodes populations that attracted different preferred pollinators. High interpopulation gene flow was detected, but populations were genetically structured at species level. The high interpopulation gene flow levels independent of preferred pollinators suggest that local adaptation to different pollinators has not (yet) generated detectable genome‐wide separation. Alternatively, despite extensive gene flow, few genes underlying floral isolation remain differentiated as a consequence of divergent selection. Different pollination ecotypes in O. sphegodes might represent a local selective response imposed by temporal variation in a geographical mosaic of pollinators as a consequence of the frequent disturbance regimes typical of Ophrys habitats.  相似文献   

13.
Few studies have quantified the full range of pre‐ and postzygotic barriers that limit introgression between closely related plant species. Here, we assess the strength of four isolating mechanisms operating between two morphologically similar and very closely related sympatric orchid taxa, Chiloglottis valida and C. aff. jeanesii. Each taxon sexually attracts its specific wasp pollinator via distinct floral volatile chemistry. Behavioral experiments with flowers and synthetic versions of their floral volatiles confirmed that very strong pollinator isolation is mediated by floral odor chemistry. However, artificially placing flowers of the two taxa in contact proximity revealed the potential for rare interspecific pollination. Although we found hybrid vigor in F1 hybrids produced by hand‐crossing, genetic analysis at both nuclear and chloroplast loci showed significant and moderate‐to‐strong genetic differentiation between taxa. A Bayesian clustering method for the detection of introgression at nuclear loci failed to find any evidence for hybridization across 571 unique genotypes at one site of sympatry. Rather than inhibiting gene flow, postpollination barriers surveyed here show no contribution to overall reproductive isolation. This demonstrates the primacy of pollinators in maintaining species boundaries in these orchids, which display one of the strongest known examples of prepollination floral isolation.  相似文献   

14.
Sun M  Lo EY 《PloS one》2011,6(5):e19671
Biodiversity of mangrove ecosystems is difficult to assess, at least partly due to lack of genetic verification of morphology-based documentation of species. Natural hybridization, on the one hand, plays an important role in evolution as a source of novel gene combinations and a mechanism of speciation. However, on the other hand, recurrent introgression allows gene flow between species and could reverse the process of genetic differentiation among populations required for speciation. To understand the dynamic evolutionary consequences of hybridization, this study examines genomic structure of hybrids and parental species at the population level. In the Indo-West Pacific, Bruguiera is one of the dominant mangrove genera and species ranges overlap extensively with one another. Morphological intermediates between sympatric Bruguiera gymnorrhiza and Bruguiera sexangula have been reported as a variety of B. sexangula or a new hybrid species, B. × rhynchopetala. However, the direction of hybridization and extent of introgression are unclear. A large number of species-specific inter-simple sequence repeat (ISSR) markers were found in B. gymnorrhiza and B. sexangula, and the additive ISSR profiling of B. × rhynchopetala ascertained its hybrid status and identified its parental origin. The varying degree of scatterness among hybrid individuals in Principal Coordinate Analysis and results from NewHybrids analysis indicate that B. × rhynchopetala comprises different generations of introgressants in addition to F(1)s. High genetic relatedness between B. × rhynchopetala and B. gymnorrhiza based on nuclear and chloroplast sequences suggests preferential hybrid backcrosses to B. gymnorrhiza. We conclude that B. × rhynchopetala has not evolved into an incipient hybrid species, and its persistence can be explained by recurrent hybridization and introgression. Genomic data provide insights into the hybridization dynamics of mangrove plants. Such information can assist in biodiversity assessment by helping detect novel taxa and/or define species boundaries.  相似文献   

15.
The type of reproductive isolation prevalent in the initial stages of species divergence can affect the nature and rate of emergence of additional reproductive barriers that subsequently strengthen isolation between species. Different groups of Mediterranean deceptive orchids are characterized by different levels of pollinator specificity. Whereas food-deceptive orchid species show weak pollinator specificity, the sexually deceptive Ophrys species display a more specialized pollination strategy. Comparative analyses reveal that orchids with high pollinator specificity mostly rely on premating reproductive barriers and have very little postmating isolation. In this group, a shift to a novel pollinator achieved by modifying the odour bouquet may represent the main isolation mechanism involved in speciation. By contrast, orchids with weak premating isolation, such as generalized food-deceptive orchids, show strong evidence for intrinsic postmating reproductive barriers, particularly for late-acting postzygotic barriers such as hybrid sterility. In such species, chromosomal differences may have played a key role in species isolation, although strong postmating-prezygotic isolation has also evolved in these orchids. Molecular analyses of hybrid zones indicate that the types and strength of reproductive barriers in deceptive orchids with contrasting premating isolation mechanisms directly affect the rate and evolutionary consequences of hybridization and the nature of species differentiation.  相似文献   

16.
The majority of convincingly documented cases of hybridization in angiosperms has involved genetic introgression between the parental species or formation of a hybrid species with increased ploidy; however, homoploid (diploid) hybridization may be just as common. Recent studies, including one in BMC Evolutionary Biology, show that pollinator shifts can play a role in both mechanisms of hybrid speciation.  相似文献   

17.

Background and Aims

Floral traits, such as floral volatiles, can contribute to pre-zygotic reproductive isolation by promoting species-specific pollinator foraging. When hybrid zones form, floral traits could also influence post-zygotic isolation. This study examined floral volatiles in parental species and natural hybrids in order to explore potential scent mediation of pre-zygotic and post-zygotic isolation.

Methods

Floral bouquets were analysed for the sister species Ipomopsis aggregata and I. tenuituba and their natural hybrids at two contact sites differing in both hybridization rate and temporal foraging pattern of hawkmoth pollinators. Floral volatiles were quantified in diurnal and nocturnal scent samples using gas chromatography–mass spectrometry.

Key Results

The bouquets of parental species and hybrids showed qualitative overlap. All flowers emitted similar sets of monoterpenoid, sesquiterpenoid, aliphatic and benzenoid compounds, but separated into groups defined by multivariate analysis of quantitative emissions. The parental species differed most strikingly in the nitrogenous compound indole, which was found almost exclusively in nocturnal bouquets of I. tenuituba. Natural hybrid bouquets were highly variable, and showed emission rates of several compounds that appeared transgressive. However, indole emission rates were intermediate in the hybrids compared with rates in the parents. Volatile bouquets at the contact site with lower hybridization did not show greater species specificity in overall scent emission, but I. tenuituba presented a stronger indole signal during peak hawkmoth activity at that site.

Conclusions

The two species of Ipomopsis differed in patterns of floral bouquets, with indole emitted in nocturnal I. tenuituba, but not in I. aggregata. Natural hybrid bouquets were not consistently intermediate between the parents, although hybrids were intermediate in indole emission. The indole signal could potentially serve as a hawkmoth attractant that mediates reproductive isolation both before and after hybrid formation.  相似文献   

18.
Natural hybridization plays a critical role in speciation, the maintenance of reproductive isolation, and genetic introgression. While many plant species have hybrid swarms in areas of sympatry, the lack of hybrids among closely related sympatrically distributed species suggests that strong pre- and/or postzygotic barriers exist to hybridization. Gelsemium sempervirens and G. rankinii (Gelsemiaceae) are sympatrically distributed southeastern sister taxa that have strong postzygotic barriers to hybrid formation and high levels of genetic differentiation. In this study, two sympatric populations in Lowndes County, Georgia were surveyed from 1999-2005 to assess the role of temporal and pollinator isolation as potential prezygotic barriers. The populations had mostly non-overlapping flowering periods in 2003-2005, with significant differences in time of peak flowering and length of flowering. Both species shared a similar community of flower visitors, with the apid bee Habropoda laboriosa the dominant visitor to both species. A choice experiment found that H. laboriosa visited both species but preferred G. sempervirens. The primary prezygotic barrier is temporal isolation preventing hybridization in spite of the shared pollinators. This study suggests that reliance on a shared pollinator during speciation may limit opportunity for divergent selection on flowering time.  相似文献   

19.
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre-and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species,R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation.All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators;reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.  相似文献   

20.

Background and Aims

Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based primarily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait variation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure.

Methods

The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pollinator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spectrometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed.

Key Results

The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis.

Conclusion

Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号