首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Specific changes in the bioelectrical activity of the brain have been found in 27 patients with different levels of posttraumatic consciousness depression (stupor, spoor-coma I, coma II) by the methods of cross correlation, and coherence and factor EEG analysis. The changes in activity of the morphofunctional systems of intracerebral integrations were expressed partly in a decrease in the nonspecific activating effects from brainstem structures, which was reflected in an increase in the slow wave activity along with a considerable decrease in the level of EEG coherence in the α and β ranges. The observed depression of the system’s organization of the interrelations of the bioelectrical brain activity in the frontal and occipital regions of both hemispheres could be due to a decreased activity of the associative systems of intercortical and thalamocortical integration. The results suggest a certain facilitation of the activity of the system providing direct interhemispheric connections through the corpus calossum and other commissural tracts of the telencephalon as a consequence of the depression of the mesodiencephalon structures (which normally largely contribute to the synergistic interhemispheric interaction via synchronous ascending effects on the cortex of both hemispheres). This results in steady, reciprocal, and almost antiphase relations of slow wave activity in symmetrical areas of the hemispheres.  相似文献   

2.
Complex analysis of EEG and thermographic parameters carried out in 10 healthy subjects and 34 patients, Chernobyl clean-up participants revealed a correlation between EEG and brain temperature changes in the baseline state and during mental arithmetic. During cognitive activity the maximal increase in the average EEG coherence and temperature shifts in healthy subjects were observed in the left frontotemporal and right parietotemporal areas. In patients changes in both parameters under study were most pronounced, the interhemispheric relations were impaired. The visual analysis revealed "flat" and "hypersynchronous" EEG types in patients. The dominant pathologic activity in the betal range indicative of mediobasal and oral brainstem lesions was characteristic of the flat EEG. This type of activity was observed in 60% of patients. In these cases, a general decrease in EEG coherence and temperature was most pronounced in the left hemisphere. The hypersynchronou EEG type (40% patients) was characterized by paroxysmal activity in the theta and alpha ranges suggesting diencephalic brain lesions. In these cases, EEG coherence and temperature were more variable; changes in the right hemisphere were significant, be it increase or decrease. Our complex approach to investigation of brain activity in different aspects seems to be promising in estimation of the brain functional state both in healthy persons and patients in remote terms after exposure to radiation. The specific hemispheric temperature changes revealed in Chernobyl patients especially during cognitive activity can be the sequels of postradiation disorders of vascular neuro-circulation. The EEG findings suggest subcortical disorders at different levels (diencephalic or brainstem) and functional failure of the right or left hemispheres in remote terms after exposure to radiation.  相似文献   

3.
The authors summarized the EEG findings and defined the nature of intercentral EEG relationships in different functional states of healthy subjects and patients with organic cerebral pathology based on coherence analysis. The EEG features typical of healthy subjects were identified: an anterior-posterior gradient of the mean coherence and the character of cortical-subcortical relationships in the anterior cerebral structures. Right- and lefthanded subjects showed the frequency and regional differences in EEG coherence, which reflected, mainly, specific intracortical relationships. Development and regression of pathologic signs in right- and lefthanded patients with organic brain lesions are thought to be determined by these differences. As distinct from cortical pathology, lesions of regulatory structures (diencephalic, brainstem, and limbic) were shown to produce more diffuse changes in intercentral relationships with a tendency to reciprocity. Intercentral relations, including their interhemispheric differences, varied with changes in the functional state of healthy subjects (increase and decrease in the level of functioning). A certain time course of changes in intercentral relationships was also revealed in patients with organic brain lesions during recovery of their consciousness and mental activity. Changes in the dominance of activity of individual regulatory structures are considered to be one of the most important factors that determine the dynamic character of EEG coherence.  相似文献   

4.
This article generalizes the results of many years’ studies of the EEG of patients with tumorous lesions in the diencephalic, brainstem, and limbic structures, which fulfill the regulatory function in ensuring integral brain activity. The specific features of the inclusion of individual structures under investigation in the organization of the intra- and interhemispheric relations of cortical biopotentials were demonstrated against the background of diffuse changes in the biopotentials that reflect the systemic character of neurodynamic reorganizations when the regulatory brain structures are involved in the pathological process. This study expands the idea of the predominant functional connection of the diencephalic structures with the right hemisphere and brainstem structures with the left one with determination of the regional specific features of changes in the intrahemispheric EEG coherences. The distinguishing features of intercentral relations when the limbic structures are involved in the pathological process show similarity with the neurodynamic reorganizations in patients with lesions in both diencephalic and (even more so) brainstem structures. Universal elements were detected in the formation of integral adaptive reactions of the brain with lesions in its regulatory structures, which reflects their close functional interaction and makes it possible to consider them the individual links of an integral regulatory system. The study revealed reciprocal changes in various forms of electrical activity, which reflects reciprocation of interaction of individual regulatory structures. This is one of the EEG equivalents of the formation of adaptive-compensatory cerebral reactions. The specificity of influence of the studied regulatory structures are clearly seen in situations of their morphofunctional isolation observed during cerebral coma. In these conditions, when the cortex is functionally inactive, the authors demonstrated the dynamic character of changes in interhemispheric asymmetry, which reflects the dominance of individual links of the regulatory system playing the role of supreme regulator of life support of the body in critical states.  相似文献   

5.
Dynamic clinical and EEG examinations (78 observations) were carried out in 17 patients suffering from severe craniocerebral injury during the course of their rehabilitation. Successful recovery of functions to the point of social and family readaptation was reached in 61% of patients (group I), and in 39% of patients the results were poor (group II). The complex of EEG coherence parameters (six rhythmic bands, mean coherence levels for 26 intrahemispheric and 8 interhemispheric derivation pairs, and the asymmetry coefficient of the EEG coherence) was analyzed in patients in comparison with normal values (20 right-handers). The rehabilitation was most efficient in cases when a certain dynamic sequence of patterns of interhemispheric relations of the EEG coherence was observed. First, a stable formation of right-hemispheric dominance was observed (most expressed in the centrofrontal areas in the range). This asymmetry pattern was phenomenologically associated with the recovery of the emotional sphere and positive dynamics in the motor and autonomic spheres. Later on, formation of the left-hemispheric dominance of the EEG coherence was observed (in the frontotemporal areas in the – ranges. This pattern was associated with complication of the cognitive functions. In the most severe forms of brain damage, the rehabilitation process was accompanied by changes in the interhemispheric EEG coherence with the elements of stealing from one of the hemispheres, which was correlated with clinical dynamics. Different types of the dynamics of reactive changes in the EEG coherence were revealed in patients of the two groups: successive formation of a generalized and then local modally specific reaction to afferent stimuli was observed in group I, while the generalized type of reactivity persisted in group II until the end of rehabilitation. It is suggested that the different sequence of formation of the interhemispheric EEG coherence reflects the involvement of different brain regulation systems in different orders into the integrative activity, i.e., some specific features of the rehabilitation process.  相似文献   

6.
In healthy subjects (11 right-handed men) reorganization was studied of intra- and interhemispheric correlation of the electrical brain activity at transition from the state of alertness to drowsiness. At the lowering of alertness level, the coherence of hemispheres symmetrical points changed not abruptly, with a tendency towards an increase at differently directed character of changes of combinations of separate physiological rhythms ranges. Comparison of the EEG coherence changes within the right and left hemispheres revealed a greater reactivity of the left (dominant) hemisphere. The reduction of the predominance (observed in the dominant hemisphere in alertness) of the degree of EEG conjunction, at transition to drowsiness, leads to smoothing of interhemispheric asymmetry in the organization of electrical brain processes.  相似文献   

7.
The dynamic study of EEG spectra and coherence in 52 patients in early period after tumor ablation at the diencephalic (27 patients) and brainstem (25 patients) levels with favourable (24 patients) and lethal (28 patients) outcomes revealed a dependence of their changes on the reversibility or irreversibility of pathological irritation of these brain levels. At regressively developing foci and retained compensatory mechanisms characteristic changes of EEG relations were seen in the central cortical areas, i. e. in cortical projection zone of the nonspecific thalamic pathways. The changes observed consisted of EEG synchronization in the band of 7 cps and sharp coherence increase while changes of EEG correlations in other cortical areas were unsimilar. Gradual EEG normalization with alpha-rhythm restoration passed through the stage of sigma-rhythm and slow sleeplike waves which indicated the safety of brainstem-subcortical hypnogenic systems. In patients with destructive foci at the diencephalic and brainstem levels, i. e. under conditions of brain functioning similar to "cerveau isolé" and "encephale isolé",--a general coherence decrease and EEG synchronization in the band of 5 cps, or generalized slow, monomorphic oscillations were observed.  相似文献   

8.
Studies were conducted with the participation of 20 patients with different classical variants of neurotic depression. The spatial organization of the bioelectrical activity of the brain was studied with the method of cross-correlation and coherent analysis. The autonomic-visceral state was assessed by the results of the auricular cryoreflex test (measurement of the cold sensibility of auricular points). The clinical picture of neurotic depression was shown to be reflected in the structure of the EEG spatial organization, which is modified depending on the degree of neurotic depression and the concomitant anxiety and asthenic syndromes. In the group with depressive syndrome without concomitant asthenic or anxiety manifestations, most changes were revealed in the right frontotemporal-left posterotemporal region. A cross-correlation and coherence decrease in the frontotemporal regions of both hemispheres and markedly increased cross-correlations in the right posterotemporal region were revealed in the depression + associated anxiety group. In the group where the depressive and anxiety syndromes were associated with marked asthenic manifestations, decreased cross-correlation and coherent relations in the frontotemporal regions of both hemispheres were observed. The clinical picture of neurotic disorders is reflected in a specific pattern of variations in the spatial organization of electrical activity of the cerebral cortex and in variations in the autonomic visceral state parameters. The development of negative emotional states in humans is accompanied by changes in the visceral functions. Variations in the central brain structures involve the zones of representation of emotional reactions and the zones of cortical representation of the organs. Insignificant central variations may cause autonomic dysfunction.  相似文献   

9.
The current state of the problem of changes of brain functional asymmetry in psychopathology is reviewed from the point of view of disorders of interhemispheric interaction as the main chain in genesis of affective disorders and schizophrenia. Based on studies of individual activation of the left and right hemispheres as well as on evaluation of cognitive activity, it is shown that psychopathology is accompanied by a disorder of hemispheric interaction with shift of the interhemispheric activation balance towards the right hemisphere in depression and towards the left hemisphere in maniacal states and paranoid schizophrenia. Changes of the activation balance lead to disorder of cognitive activity and human adaptation in the environment. A conclusion is made that disinhibition of subcortical and brainstem structures in psychoses occurs not only vertically, but also horizontally, when the complementary and superpositional interaction of hemispheres shifts to the evolutionary earlier reciprocal type of interaction with domination of cognitive functions of the right hemisphere in depression and of the left hemisphere in the maniacal state and schizophrenia.  相似文献   

10.
Correlation and coherence analyses of multichannel electroencephalogram (EEG) recordings from 18 subjects (mean age 25 years) were used for investigating the reorganization of systemic interactions between bioelectric potentials of the cortical areas of both hemispheres (20 EEG derivations) during verbal-mental activity connected with generating verbal units from simpler components. When generating either words from aurally presented phonemes or sentences from a set of words, the subjects exhibited specific changes in the spatial structure of the statistical relationships in the EEG, with a significant increase in the interhemispheric interactions. During performance of both tasks, the changes in the interhemispheric interactions were most pronounced in the temporal, temporo-parieto-occipital (TPO), inferofrontal, and occipital areas of both hemispheres. Phonemic synthesis was associated with a more marked increase in the contralateral interactions in the left hemisphere, and generating sentences from words, in the right hemisphere. The coherence analysis of the EEG showed the greatest changes in the Δ, ?, and β frequency bands, with rather slight changes in the α frequency band. For all frequency bands, changes in the EEG coherences were the greatest in Wernicke’s and the TPO areas of the right and left hemispheres during the performance of both tasks, especially during the phonemic synthesis. These findings suggest that neurophysiological processes underlying mental generation of words and sentences require coordinated activity of the left and right hemispheres, which is accompanied by an increase in the interhemispheric interactions in the EEG, especially in the temporal, inferofrontal, and TPO areas.  相似文献   

11.
Electropoligraphical study of the natural night sleep in 16 adults with the use of correlation, coherent, cluster and factor analysis were used to obtain new data describing the active nature of sleep, which is expressed especially in periods of falling asleep and the transition from one stage to another. It is shown that the process of falling asleep and deeper sleep is accompanied by intense reorganization of cortico-subcortical relations, which is reflected in the dynamics ofcrosscorrelation and coherent estimates of interrelations of biopotentials of the brain. The results of factor analysis of multichannel EEG heterogeneity of the transition process from wakefulness to sleep is manifested in significant changes of I, II and III factors weight during I(B) stage of sleep, which may reflect changes in the degree of contribution of the main integrative brain systems in the reorganization of its integral activity. A considerable increase in the I factor weight (reflecting the generalized modulatory brainstem effect on the cortex), along with a decrease in the balance of factors II and III (associated with organization of fronto-occipital and interhemispheric interactions) clearly indicates a special role of sleep synchronizing influences from the brain stem in the development of this initial stage. Reduction of EEG interhemispheric interrelations in the anterior and inferior frontal areas with the deepening of sleep may be indication of the reorganization of the frontal areas activity associated with the coordinated increasing of inactivation process in the cortex of both hemispheres. Degree of stability of the spatial structure of interregional interactions of different brain cortex areas (according to the analysis of average dispersion of crosscorrelation EEG relations) increases on falling asleep with the onset of stage I(A), but with the transition to the stage I(B) there is a significant increase of instability of values EEG crosscorrelation. With the deepening of sleep the subsequent decrease of the dispersion of EEG crosscorrelations in frontal cortex is revealed. During REM sleep the dispersion levels of inter-regional interactions increases as much as possible, especially for EEG crosscorrelations of posterotemporal and inferiofrontal parts of both hemispheres.  相似文献   

12.
A spectrofluorometric study of the changes in serotonin and noradrenalin content was carried out in the cortex of large hemispheres, the hypothalamus and the midbrain on the 5th-6th day after creation of a pathological focus in the area of the occipital portion of the cortex in 12 cats. Diffuse changes in the bioelectrical activity of the brain were revealed on the EEG at this period: there appeared peak-like variations and slow waves of increased amplitude. There was noted a marked decrease in serotonin content in the cortex of the large hemispheres with the prevalance of an effect in the area directly adhering to the focus of affection. A tendency to reduction in serotonin level was revealed in the hypothalamus and the midbrain. The content of noradrenalin in the mentioned structures of the brain showed no significant change. The significance of the serotoninergic structures of the brain in the mechanisms participating in the restoration of the functional condition of the brain after its experimental injury is discussed.  相似文献   

13.
For more precise definition of the role of hemispheric interconnections in mechanisms of human CNS compensation the intercentral relations of the electrical activity of the left and right cerebral hemispheres were studied on physiological model of focal interhemispheric asymmetry. Spectral-coherent EEG characteristics of 36 patients with tumoral damage of one hemisphere were studied in condition of chronic (prior to operation) and acute (early terms of postoperative period) brain decompensation. In was shown that the reorganization of the structure of the EEG intercentral relations correlated with definite stages of CNS compensatory processes and that the character of hemispheric interconnections depended on the lateralization of the damage focus. The primary role was revealed of the degree of the left (dominant) hemisphere preservation in restoration of normal pattern of the interhemispheric asymmetry of the coherence of human brain electrical processes.  相似文献   

14.
To study the problem of consciousness an original structural-functional approach has been applied with the use of possibilities of spectral-coherent EEG analysis in evaluation of human brain functional state together with the specificity of the cerebral coma having local focal belonging. It is revealed that the most informative signs for characteristics of consciousness state are peculiarities of reconstruction of intercentral relations of the electrical brain processes: decrease of mean levels of the EEG coherence at progressive development of coma; staged approach to relative norm at regressive course of comatose state and recovery of consciousness; their stability on the low level at prolonged coma; increase in low or high (above optimum) frequencies band at neighbouring with coma states of consciousness. It may be considered that one of the necessary conditions of normal state of consciousness is preservation of the optimum level of correlation of electrical brain activity alongside with frequency-regional specificity of the EEG coherence spectrum. Any deviation from the optimum is unfavourable condition for normal course of cerebral reactions because of the disturbance of intercentral connections mosaic necessary for their realization.  相似文献   

15.
Electropolygraphic study of natural night sleep was performed in 16 adult subjects using correlation, coherent, cluster, and factor analyses. New evidence testifies to the active nature of sleep, which is especially manifest during falling asleep and transition from one stage of sleep to another. Falling asleep and deepening the sleep proved to be accompanied by intense reorganization of the cortico-subcortical relationships, which is reflected in the dynamics of cross-correlative and coherent interrelationships of the brain??s bioelectric potentials. Transition from wakefulness to sleep is a heterogeneous process, which is expressed in significant changes in the weights of factors I, II and III of the vector image of multichannel EEG at stage I (B) of sleep, which might reflect changes in the contribution of the main integrative brain system in the reorganization of the brain??s integrated activity. A considerable increase in the weight of factor I (this reflects generalized the modulating effect of the brainstem on the cortex) and a decrease in the weights of factors II and III (which are related to fronto-occipital and interhemispheric interactions) testify to the special synchronizing role of the brainstem in the development of this initial stage of sleep. Deeper sleep is accompanied by a decrease in interhemispheric EEG relationships of the anterior and inferior frontal areas of the cortex, which suggests that coordinated inactivation of the cortex in both hemispheres leads to reorganization of the activity in the frontal areas. Analysis of the average variance of cross-correlative (CC) EEG relationships demonstrates that stability of the spatial structure of interrelationships between various areas of the brain cortex increases with falling asleep at stage I (A); however, during transition to stage I (B), the CC EEG values become unstable and, with deepening sleep, the variance of these values decreases in the frontal brain cortex. With the onset of the paradoxical phase of sleep, the variance of the levels of interregional interactions increases to the maximum, especially with respect to the EEG relations of the posteriotemporal and inferiofrontal areas of both hemispheres.  相似文献   

16.
The present study was aimed at comparative electrophysiological, clinical, and neurophysiological assessment of the brain functional state in dextrals (50 men) and sinistrals (5 men), who participated in the Chernobyl clean. The patients were observed over the course of 10 years (from 1990 to 1999). The results of examination of healthy persons (20 dextrals and 10 sinistrals) were used as a control. The clinical examination revealed the earlier manifestation and more severe development of paroxysmal and epileptic seizures in sinistrals than in dextrals. Electrophysiological study showed a progressive decrease in interhemispheric asymmetry of the EEG coherence characteristic for a healthy brain to inversion of its sign. These changes were more pronounced in sinistrals. In the remote terms after radiation, the interhemispheric EEG coherence decreased over the whole cortex, especially, in the frontal and central areas in both groups of patients. Neurophysiological study revealed a progressive impairment of voluntary motor activity and tactile sensibility, especially, in the left hand. These defects were more expressed in sinistrals than in dextrals. The results of complex and longitudinal examination suggest that the observed changes in brain asymmetry and interhemispheric interaction can be not only a result of a dysfunction of subcortical limbic-reticular and mediobasal brain structures but also a result of the white matter damage including corpus callosum. More expressed impairments in sinistrals than in dextrals can be explained by specific morphofunctional organization of the brain in persons with different sensor and motor asymmetries.  相似文献   

17.
The role of the cerebral subcortical structures in speech formation was studied by analyzing the data on the comprehensive examination of children with alalia. Alalia is a systemic underdevelopment of speech in which all the speech components are disordered. The assessment of the functional state of the brain structures by means of EEG allowed us to identify two groups differing in the pattern of changes in bioelectrical activity (BEA): group 1 with α rhythm changes and/or local BEA changes, predominantly in the left hemisphere, and group 2 with predominantly generalized EEG changes of brainstem origin. Integrated analysis of clinical data allowed us to suggest that a lesion of the left hemisphere subcortical structures and the brainstem divisions underlies the formation of alalia. The analysis of the perinatal risk factors allowed us to advance the hypothesis that damage to the subcortical structures was linked to antenatal complications in the first half of pregnancy.  相似文献   

18.

Introduction

Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG.

Material/Methods

Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources.

Results/Conclusion

Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of children with these encephalopathies.  相似文献   

19.
Asymmetry of different human EEG indices was studied at different levels of consciousness. Subjects' self-reported changes in the content of consciousness: the intensity and quality of involuntary mental processes served as indicator of the level of consciousness. It was shown that a certain profile of EEG asymmetry corresponded to each the observed level of consciousness. In active state of consciousness, the connections in the high-frequency bands: beta-2 and gamma, were more pronounced in the left hemisphere of the brain. At the same time, transition of the focus of coherent connections to the right hemisphere was characteristic of the state of inhibition of "internal speech". The interhemisphere dynamics of autospectra amplitude and foci of coherent connections supports the notion that the character of interhemisphere asymmetry of the brain bioelectrical activity depends on its functional state.  相似文献   

20.
Nine patients with posttraumatic Korsakoff syndrome (KS) were examined before and after a rehabilitation course of feedback stability training (ST) using EEG, posturographic and clinical tests (with the FIM and Mayo Portland scales used for estimation). During 7 to 12 sessions, the patients tried to perform static and motor tasks. A group of 18 healthy subjects were examined to provide standard parameters. The results demonstrated a disturbed spatiotemporal EEG pattern in patients with KS before ST in the form of a reduced coherence for short derivation pairs (intrahemispheric, interhemispheric, and diagonal ones) in frontal and parietooccipital areas. Analysis of specific EEG rhythms demonstrated the maximum decrease in coherence in the α band (with the aforementioned regional specificity) and for long diagonal pairs (between the left frontal and right parietooccipital areas). The ST course was accompanied by KS regression (according to clinical scales and posturographic study); an original increase in EEG coherence, especially that of α waves, was recorded in the occipitoparietal and central frontal areas of the right hemisphere; a subsequent increase in coherence of the frontal areas in both hemispheres was observed. Late after the ST course, further positive changes were characteristic of the EEG spatiotemporal pattern. However, comparison with standard data suggested incomplete recovery of various coherence parameters: hypertrophied coherence in intrahemispheric pairs and still reduced values in interhemispheric derivations. This EEG pattern suggested incomplete KS regression, which was confirmed by clinical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号