首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The fungus P. citrinum produces secondary metabolites, clavinet ergot alkaloids (EA), and quinoline alkaloids (quinocitrinines, QA) in medium with various carbon and nitrogen sources and in the presence of iron, copper, and zinc additives. Mannitol and sucrose are most favorable for EA biosynthesis and mannitol is most favorable for QA. Maximum alkaloid production is observed on urea. Iron and copper additives in the medium containing zinc ions stimulated fungal growth but inhibited alkaloid biosynthesis. The production of these secondary metabolites does not depend on the physiological state of culture, probably due to the constitutive nature of the enzymes involved in biosynthesis of these substances.  相似文献   

2.
The effect of a carbohydrate component of the medium, trace elements and aeration on biosynthesis of the alkaloids costaclavine and epicostaclavine was studied with Penicillium gorlenkoanum. Alkaloid biosynthesis was shown to depend on the nature of a carbohydrate component: virtually no alkaloids were accumulated in media with glucose and fructose although these were synthesized at a high rate in a medium with mannitol. The quantity of synthesized alkaloids and the dynamics of the biosynthesis depended on carbohydrate concentration. The growth and alkaloid synthesis were influenced by traces of zinc, iron, copper and manganese. A more intensive aeration stimulated biomass accumulation but suppressed alkaloid biosynthesis.  相似文献   

3.
Penicillium citrinum VKM F-1079 was found to produce clavine ergot alkaloids and citrinin, a secondary O-heterocyclic metabolite. Citrinin was produced in the idiophase, whereas the production of ergot alkaloids paralleled fungal growth. The addition of manganese ions to the growth medium stimulated the biosynthesis of both citrinin and ergot alkaloids. Zinc ions stimulated only citrinin synthesis. The presence of these microelements in the growth medium influenced the proportion between the ergot alkaloids synthesized. Copper, manganese, and iron ions affected but little fungal growth and alkaloid production. The effect of microelements on the main kinetic parameters of growth and alkaloid production was studied.  相似文献   

4.
The study of the secondary metabolites of the relict strain Penicillium citrinum VKM FW-800 isolated from ancient Arctic permafrost sediments showed that this fungus produces agroclavine-1 and epoxyagroclavine-1, which are rare ergot alkaloids with the 5R,10S configuration of the tetracyclic ergoline ring system. The production of the alkaloids by the fungus showed a biphasic behavior, being intense in the phase of active growth and slowing down in the adaptive lag phase and in the stationary growth phase. The addition of zinc ions to the incubation medium led to a fivefold increase in the yield of the alkaloids. The alkaloids-producing Penicillium fungi isolated from different regions exhibited the same tendencies of growth and alkaloid production.  相似文献   

5.
《Gene》1996,179(1):73-81
Tetrahydrobenzylisoquinoline alkaloids comprise a diverse class of secondary metabolites with many pharmacologically active members. The biosynthesis at the enzyme level of at least two tetrahydrobenzylisoquinoline alkaloids, the benzophenanthridine alkaloid sanguinarine in the California poppy, Eschscholtzia californica, and the bisbenzylisoquinoline alkaloid berbamunine in barberry, Berberis stolonifera, has been elucidated in detail starting from the aromatic amino acid (aa) l-tyrosine. In an initial attempt to develop alternate systems for the production of medicinally important alkaloids, one enzyme from each pathway (BBE, a covalently flavinylated enzyme of benzophenanthridine alkaloid biosynthesis and CYP80, a phenol coupling cytochrome P-450-dependent oxidase of bisbenzylisoquinoline alkaloid biosynthesis) has been purified to homogeneity, a partial aa sequence determined, and the corresponding cDNAs isolated with aid of synthetic oligos based on the aa sequences. The recombinant enzymes were actively expressed in Spodoptera frugiperda Sf9 cells using a baculovirus vector, purified and then characterized. Insect cell culture has proven to be a powerful system for the overexpression of alkaloid biosynthetic genes.  相似文献   

6.
Fungi of the genus Penicillium isolated from little studied habitats are able to synthesize both previously known and new physiologically active compounds with diverse structures. They include secondary metabolites of alkaloid nature, i.e., ergot alkaloids, diketopiperazines, quinolines, quinazolines, benzodiazepines, and polyketides. We discuss the use of profiles of secondary metabolites for taxonomy purposes. Studying the physicochemical characteristics of producers of biologically active compounds showed that the biosynthesis of alkaloids is initiated on the first days of cultivation and proceeds simultaneously with growth. The cyclic character of alkaloid accumulation was recorded related to the processes of alkaloid biosynthesis, excretion from cells, degradation in culture fluid, and consumption by cells. Synchronic variations in the concentrations of intracellular tryptophan and alkaloids are necessary for the regulation of the optimal quantity of tryptophan necessary for the culture.  相似文献   

7.
Abstract Penicillium cyclopium produces benzodiazepine alkaloids from l -phenylalanine and anthranilate. The biosynthesis of both precursors involves the enzymes of the shikimate pathway DAHP synthase, chorismate mutase and anthranilate synthase, the latter two competing for the common substrate chorismate. After the cultures reached the phase of alkaloid production, the in vitro measurable activities of these three enzymes could be increased by adding the alkaloids during incubation. The stimulation is most pronounced with anthranilate synthase, whose activity most probably limits the rate of alkaloid formation. It is not seen with tryptophan synthase which is not involved in the formation of alkaloid precursors. The data suggest a far reaching feedback activation, coordinating precursor biosynthesis with the formation of secondary product.  相似文献   

8.
The study of the secondary metabolites of the relict strain Penicillium citrinum VKM FW-800 isolated from ancient Arctic permafrost sediments showed that this fungus produces agroclavine-1 and epoxyagroclavine-1, which are rare ergot alkaloids with the 5R,10S configuration of the tetracyclic ergoline ring system. The production of the alkaloids by the fungus showed a biphasic behavior, being intense in the phase of active growth and slowing down in the adaptive lag phase and in the stationary growth phase. The addition of zinc ions to the incubation medium led to a fivefold increase in the yield of the alkaloids. The alkaloid-producing Penicillium fungi isolated from different regions exhibited the same tendencies of growth and alkaloid production.  相似文献   

9.
Alkaloids represent a large and diverse group of compounds that are related by the occurrence of a nitrogen atom within a heterocyclic backbone. Unlike other types of secondary metabolites, the various structural categories of alkaloids are unrelated in terms of biosynthesis and evolution. Although the biology of each group is unique, common patterns have become apparent. Opium poppy ( Papaver somniferum ), which produces several benzylisoquinoline alkaloids, and Madagascar periwinkle ( Catharanthus roseus ), which accumulates an array of monoterpenoid indole alkaloids, have emerged as the premier organisms used to study plant alkaloid metabolism. The status of these species as model systems results from decades of research on the chemistry, enzymology and molecular biology responsible for the biosynthesis of valuable pharmaceutical alkaloids. Opium poppy remains the only commercial source for morphine, codeine and semi-synthetic analgesics, such as oxycodone, derived from thebaine. Catharanthus roseus is the only source for the anti-cancer drugs vinblastine and vincristine. Impressive collections of cDNAs encoding biosynthetic enzymes and regulatory proteins involved in the formation of benzylisoquinoline and monoterpenoid indole alkaloids are now available, and the rate of gene discovery has accelerated with the application of genomics. Such tools have allowed the establishment of models that describe the complex cell biology of alkaloid metabolism in these important medicinal plants. A suite of biotechnological resources, including genetic transformation protocols, has allowed the application of metabolic engineering to modify the alkaloid content of these and related species. An overview of recent progress on benzylisoquinoline and monoterpenoid indole alkaloid biosynthesis in opium poppy and C. roseus is presented.  相似文献   

10.
Penicillium citrinum VKM F-1079 was found to produce clavine ergot alkaloids and citrinin, a secondaryO-heterocyclic metabolite. Citrinin was produced in the idiophase, whereas the production of ergot alkaloids paralleled fungal growth. The addition of manganese ions to the growth medium stimulated the biosynthesis of both citrinin and ergot alkaloids. Zinc ions stimulated only citrinin synthesis. The presence of these microelements in the growth medium influenced the proportion between the ergot alkaloids synthesized. Copper, manganese, and iron ions slightly affected fungal growth and alkaloid production. The effect of microelements on the main kinetic parameters of growth and alkaloid production was studied.  相似文献   

11.
Morphine biosynthesis was genetically engineered in an industrial elite line of the opium poppy (Papaver somniferum L.), to modify the production of alkaloids in plants. The cytochrome P-450-dependent monooxygenase (S)-N-methylcoclaurine 3'-hydroxylase (CYP80B3) lies on the pathway to the benzylisoquinoline alkaloid branch point intermediate (S)-reticuline. Overexpression of cyp80b3 cDNA resulted in an up to 450% increase in the amount of total alkaloid in latex. This increase occurred either without changing the ratio of the individual alkaloids, or together with an overall increase in the ratio of morphine. Correspondingly, antisense-cyp80b3 cDNA expressed in opium poppy caused a reduction of total alkaloid in latex up to 84%, suggesting that the observed phenotypes were dependent on the presence of the transgene. This study found compelling evidence, that cyp80b3 is a key regulation step in morphine biosynthesis and provides practical means to genetically engineer valuable secondary metabolites in this important medicinal plant.  相似文献   

12.
Benzylisoquinoline alkaloids are one of the most important secondary metabolite groups, and include the economically important analgesic morphine and the antimicrobial agent berberine. To improve the production of these alkaloids, we investigated the effect of the overexpression of putative rate-limiting step enzymes in benzylisoquinoline alkaloid biosynthesis. We introduced two O-methyltransferase [Coptis japonica norcoclaurine 6-O-methyltransferase (6OMT) and 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT)] expression vectors into cultured California poppy cells to avoid the gene silencing effect of endogenous genes. We established 20 independent lines for 6OMT transformants and 15 independent lines for 4'OMT transformants. HPLC/liquid chromatography-mass spectrometry (LC-MS) analysis revealed that the overexpression of C. japonica 6OMT was associated with an average alkaloid content 7.5 times greater than that in the wild type, whereas the overexpression of C. japonica 4'OMT had only a marginal effect. Further characterization of 6OMT in California poppy cells indicated that a 6OMT-specific gene is missing and 4OMT catalyzes the 6OMT reaction with low activity in California poppy, which supports the notion that the 6OMT reaction is important for alkaloid biosynthesis in this plant species. We discuss the importance of 6OMT in benzylisoquinoline alkaloid biosynthesis and the potential for using a rate-limiting step gene to improve alkaloid production.  相似文献   

13.
Piscarinines A and B were synthesized most actively during the surface cultivation of the fungus Penicillium piscarium in a complex medium (5.5 mg/l). Under conditions of submerged cultivation in a mineral medium, the yield of piscarinines was two times lower. An increase in the inoculum quantity of conidia treated with Tween-80 increased the culture productivity. The biosynthesis of the alkaloid was completely suppressed when mannitol was replaced with glucose or when zinc, iron, or copper ions were added to the culture medium. The metabolites were active against the prostate cancer cell line LNCAP (IC50 were 2.195 and 1.914 μg/ml for piscarinines A and B, respectively).  相似文献   

14.
The production of benzophenanthridine alkaloids (sanguinarine, chelerythrine and macarpine) in cells of Eschscholtzia californica is enhanced by sodium alginate and by entrapment in Ca2+-alginate. Tyrosine decarboxylase, a key enzyme of alkaloid biosynthesis, is induced by the treatments. Alginate- entrapped cells are elicited over an extended period of time which leads to increased alkaloid biosynthesis (up to 800-fold enhancement). A major portion of alkaloids produced are released into the growth medium.  相似文献   

15.
Adaptation of Peganum harmala Callus to Alkaloid Production   总被引:2,自引:0,他引:2  
Peganum harmala callus culture growing on a fully defined mediumcontaining the auxin 2,4-D was found to form roots and secondarymetabolites when the auxin content of the medium was reduced.The secondary metabolites included alkaloids, lignin, and ared pigment. The interrelationships between these phenomenaare discussed. Alkaloids appeared in the rootlets and the dynamicsof their production were followed. Suitable sources of N, Fe,C, and energy were essential for alkaloid synthesis; other nutrientswere needed for its maximal expression. Phosphate-free mediastimulated secondary metabolite formation while limiting growthand morphogenesis. Light raised the content of the dihydro-ß-carbolinealkaloids relative to the fully aromatic derivatives but didnot alter the total accumulation of alkaloids.  相似文献   

16.
Since the diamine putrescine can be metabolized into the pyrrolidine ring of tobacco alkaloids as well as into the higher polyamines, we have investigated the quantitative relationship between putrescine and these metabolites in tobacco callus cultured in vitro. We measured levels of free and conjugated putrescine and spermidine, and pyrrolidine alkaloids, as well as activities of the putrescine-biosynthetic enzymes arginine and ornithine decarboxylase. In callus grown on high (11.5 micromolar) α-naphthalene acetic acid, suboptimal for alkaloid biosynthesis, putrescine and spermidine conjugates were the main putrescine derivatives, while in callus grown on low (1.5 micromolar) α-naphthalene acetic acid, optimal for alkaloid formation, nornicotine and nicotine were the main putrescine derivatives. During callus development, a significant negative correlation was found between levels of perchloric acid-soluble putrescine conjugates and pyrrolidine alkaloids. The results suggest that bound putrescine can act as a pool for pyrrolidine alkaloid formation in systems where alkaloid biosynthesis is active. In addition, changes in arginine decarboxylase activity corresponding to increased alkaloid levels suggest a role for this enzyme in the overall biosynthesis of pyrrolidine alkaloids.  相似文献   

17.
The biosynthesis of the alkaloids of the Rutaceae and its relevance to their systematic value is discussed. The alkaloids are divided into groups of potential systematic significance and their distribution reviewed and analysed with respect to presently accepted taxonomic classifications for the family. It is shown that, from the alkaloid data available, Engler's classification of the major sub-families Rutoideae and Toddalioideae is untenable. An hypothesis for the phylogeny of the Rutales, based on the distribution of alkaloids and other secondary metabolites, is proposed.  相似文献   

18.
The effect of a carbohydrate medium component, aeration, tryptophane and Tween additions on the biosynthesis of alkaloids by Claviceps CP II was being studied. The quantity of synthesized alkaloids and the composition of produced alkaloids depended on the nature of the carbohydrate and its concentration. A few alkaloids were accumulated on media containing xylose, lactose and glucose, whereas active production of alkaloids was observed when galactose maltose, sucrose and sorbit were used. Intensified aeration and introduction of Tween-80 and Tween-40 resulted in an increased alkaloid yield. Exogenous tryptophane had slight stimulatory effect on alkaloid production.  相似文献   

19.
Plants produce many secondary metabolites showing considerable inter- and intraspecific diversity of concentration and composition as a strategy to cope with environmental stresses. The evolution of plant defenses against herbivores and pathogens can be unraveled by understanding the mechanisms underlying chemical diversity. Pyrrolizidine alkaloids are a class of secondary metabolites with high diversity. We performed a qualitative and quantitative analysis of 80 pyrrolizidine alkaloids with liquid chromatography-tandem mass spectrometry of leaves from 17 Jacobaea species including one to three populations per species with 4–10 individuals per population grown under controlled conditions in a climate chamber. We observed large inter- and intraspecific variation in pyrrolizidine alkaloid concentration and composition, which were both species-specific. Furthermore, we sequenced 11 plastid and three nuclear regions to reconstruct the phylogeny of the 17 Jacobaea species. Ancestral state reconstruction at the species level showed mainly random distributions of individual pyrrolizidine alkaloids. We found little evidence for phylogenetic signals, as nine out of 80 pyrrolizidine alkaloids showed a significant phylogenetic signal for Pagel's λ statistics only, whereas no significance was detected for Blomberg's K measure. We speculate that this high pyrrolizidine alkaloid diversity is the result of the upregulation and downregulation of specific pyrrolizidine alkaloids depending on ecological needs rather than gains and losses of particular pyrrolizidine alkaloid biosynthesis genes during evolution.  相似文献   

20.
Evidence for the occurrence of alkaloids in mycelial fungi, pathways of their biosynthesis and types of regulation are presented. The effect of some factors on the alkaloid production is discussed. In literature, the biosynthesis and the metabolism of diketopiperazine and ergot alkaloids in Penicillium fungi are covered most completely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号