首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serial transections of young tassels of (Zea mays land race) chapalote revealed relationships between the vascular system in its procambial state and the lateral primordia along the axis. A lateral tassel primordium usually consists of an indefinite rim with a prolongation that will become a tassel branch or spikelet pair. A lateral tassel primordium usually develops via modifications of the vegetative leaf primordium in which the leaf apex is enhanced but the leaf base and the bud it produces are suppressed. The clearest sign of the transition from the vegetative state to the tassel is the scale leaf, which is intermediate in form between a vegetative leaf and a lateral tassel primordium. Procambial traces differentiate in isolation in the tassel axis in response to the lateral tassel primordia. Adjacent procambial traces then link axially into sympodia to initiate the three-dimensional vascular system of the tassel axis. Older sympodia occur near the center of the axis interior to more recently initiated procambial traces. Procambial continuity does not occur between the tassel axis and the lateral primordia until isolated traces in the lateral primordia link with the sympodia in the tassel axis. The transition from distichy to polystichy by the lateral tassel primordia occurs as the narrowing of the leaf base makes space available on the tassel axis for lateral primordia out of the vegetative distichous plane.  相似文献   

2.
An actively growing cottonwood bud was embedded in epon-araldite and serially sectioned at 2 μm. The sections were analyzed microscopically with the optical shuttle system of Zimmermann and Tomlinson, and all data were quantitatively recorded relative to the apex and to leaf plastochron index (LPI). Analysis of the sections revealed an acropetally developing procambial system organized according to a precise phyllotaxy. Six procambial strands could be recognized and followed long before the leaf primordia that they would enter were evident at the apex. Origin of these strands coincided with developmental events both in the parent trace and its primordium and in the antecedent leaf on the same orthostichy. Once a primordium and its trace attained a certain stage of development, trace bundles began to develop basipetally from the primordium base. These trace bundles appeared to be the earliest progenitors of wood formation in cottonwood. It was concluded that the concept of residual meristem and its corollary, the hypothesis that acropetally developing procambial strands determine the inception sties of new primordia, apply to the cottonwood apex.  相似文献   

3.
Seven seedlings ranging from 1 to 25 days old were embedded in Spurr's resin and serially sectioned at 1–2 μm. Sectioning extended from well above the apex downward to the hypocotyl base in the 1–day seedlings and to varying levels in the hypocotyl in the older seedlings. Procambial development was analyzed in its entirety for each seedling, and a composite two-dimensional diagram representing the procambial system of a 25-day-old seedling was prepared. Each cotyledon was served by a double-trace, one-half of which was derived from each of two embryonic bundles. The central traces serving the four primary leaves were in turn derived from the four cotyledonary bundles comprising the double traces. The procambial system serving the cotyledons and the four primary leaves approximated a decussate phyllotaxy. The central traces serving the secondary leaves were arranged in a helix that conformed at first to a 1/3 and then to a 2/5 phyllotaxy. Transitions to higher phyllotactic orders were systematic and reproducible, and they occurred in an orderly sequence in both the central and lateral leaf traces. The manner in which leaf traces diverged from parent traces to serve new leaf primordia provided for vascular redundancy. Thus, the entire vascular system was integrated into a highly functional whole.  相似文献   

4.
LARSON  P. R. 《Annals of botany》1980,46(6):757-769
The procambial system of Populus deltoides Bartr. ex Marsh.plants progressed from phyllotaxy in the cotyledon stage throughthe phyllotactic orders 3/2;5/13. The nodal position at whicheach of these phyllotactic transitions occured was determinedby anatomical analyses; they were found to be remarkably consistentin a large population of young plants. The data were used todiagrammatically reconstruct the procambial system of a typical16 leaf plant. Because all plant parts grew continuously anduninterruptedly, it was not possible to verify the positionsof the phyllotactic transitions by morphological criteria. However,several measured parameters (the number and lengths of primordiawithin the terminal bud, the plastochron interval, and the numberof leaf traces with birefringent xylem elcments) attained constantvalues following establishment of the 5/13 phyllotaxy, suggestingthis to be the stable phyllotactic order for the species. Althoughbud size continued to increase in plants exhibiting 5/13 phyllotaxy,it could be accounted for by the increased number and size ofbasipetal subsidiary bundles in the procambial leaf traces.It was suggested that these phyllotactic transitions in theprocambial system are programmed in the plant to occur at ratherspecific stages of ontogeny. The process is mediated by theolder leaves and it is therefore modified by plant vigour. Locationof the primary-secondary vascular transition zone was also relatedto the order of phyllotaxy. It advanced acropetally in the stemin close association with leaf maturation, but this associationwas further influenced by plant vigour. Populus deltoides Bartr. ex Marsh., cottonwood, vascular anatomy, phyllotaxis, leaf growth, xylem  相似文献   

5.
Auxin signaling in Arabidopsis leaf vascular development   总被引:13,自引:0,他引:13  
  相似文献   

6.
A nearly mature axillary bud of Populus deltoides was embedded in epoxy and serially sectioned at 6 μm. Sectioning extended from the cataphyll tips to a level in the subtending internode about 6 mm below the bud base. Vascular development was followed through the serial microsections and the vascular system was mapped in its entirety from initiation of the original bud traces to termination of the last recognizable leaf trace beneath the bud apex. Each vascular trace was identified as to its origin, its termination within a foliar organ, and its relation to other traces comprising the bud vascular cylinder. Analysis of these data confirmed the procambial patterns found in Part I of this study. Two original bud traces that diverged from the central trace of the axillant leaf gave rise to two pairs of scale traces in quick succession, and these scale traces become the progenitors of all subsequent vascular traces that were perpetuated within the bud. Just before the bud vascular system separated from that of the stem, a third pair of scale traces diverged from the original bud traces; the latter then receded toward the stem to eventually merge with its vasculature. The third pair of scale traces produced a horizontal vascular connection between stem and bud before terminating in the adaxial cataphyll. The vascular system at first conformed with a ½ vascular phyllotaxy when the original bud traces were initiated, progressed through a ⅓ vascular phyllotaxy in the scale trace system, and terminated at the time of sampling with a ⅖ vascular phyllotaxy in the foliage leaf primordia.  相似文献   

7.
Plants of Pinguicula vulgaris L. have either clockwise or counterclockwise spiral phyllotaxy. The inception of floral primordia occurs in leaf sites as a normal sequence of development. Only two leaf primordia initiated late in the season develop into floral primordia in the following year. They do not represent a direct modification of the apical meristem nor of the detached meristem. The apical meristem continues to produce leaves in the vegetative phase and flowers in the reproductive phase, and thus the plants show a monopodial growth. Axillary buds are not developed in this perennial species and instead additional buds of adventitious ontogeny appear. Such buds are produced on the older leaves of larger plants, and they are extremely useful in the vegetative propagation of the species.  相似文献   

8.
The apical 22 cm of a dormant, first-year sprout of Populus grandidentata was sectioned serially, and the primary and secondary xylem systems were studied microscopically and graphically reconstructed. A total of 15 nodes was present on the mature stem and 14 foliar primordia in the dormant bud. The vascular traces in the lower portion of the mature stem conformed to a 2/5 phyllotaxy while those of the upper portion and within the dormant bud conformed to a 3/8 phyllotaxy. The 2/5 to 3/8 phyllotactic transition occurred in an extremely precise and systematic two-step pattern: (1) The lateral traces shifted to a new point of origin on the parent central trace, and (2) three new central traces were initiated in sequence by divergences from left-traces. Metaxylem, when followed downward, conformed to the arrangement of the procambial trace system only within one orthostichy. Below this point, the metaxylem components of lateral traces physically separated from those of the protoxylem and continued downward on a new course. Metaxylem vessels produced by the trace cambium originated from a postulated vessel-generating center at the stem-petiole junction. Each metaxylem vessel developing basipetally through the primary body was continuous with a secondary vessel developing basipetally in the secondary body. Because secondary development closed the vascular cylinder, vessels originating from developing leaves or primordia situated at higher levels in the shoot were displaced radially outward when they entered the secondary xyelm. The distribution of vessels in the secondary xylem can therefore be accounted for by a knowledge of the production and distribution of metaxylem vessels in the primary body.  相似文献   

9.
Jan Marc  Wesley P. Hackett 《Planta》1991,185(2):171-178
The transition from spiral to distichous leaf arrangement during gibberellic-acid (GA3)-induced rejuvenation in Hedera was studied in detail by scanning electron microscopy of the shoot apical meristem. The transition, which involves the initiation of about 14 new leaf primordia, is accomplished by progressive increments in the divergence angle between the leaf primordia from an initial average value of 138.9 ° until it approaches 180 °. This process is preceded, as well as accompanied, by an increased radial displacement of young leaf primordia away from the apical meristem. Although the width of the leaf primordia also increases, this is unlikely to be a causal factor since it occurs only late in the transition. The size of the primordium-free area of the apical meristem is also unlikely to be involved. Quantitative analysis shows that the divergence angle of consecutive leaf primordia commonly fluctuates between relatively large and small values. Thus the transitional stages form a spirodistichous arrangement in which the divergence angle within each pair of leaves is large relative to that between leaf pairs. The stimulation of the radial displacement of the leaf primordia and the associated phyllotactic transition may involve GA3-induced modification in the spatial organization of cortical microtubules in the apical meristem and related changes in directional cell expansion.Abbreviations DA divergence angle - GA3 gibberellic acid We thank Mr. Gilbert Ahlstrand for his advice regarding scanning electron microscopy. This paper is contribution of the University of Minnesota Agricultural Experimental Station No. 18,726.  相似文献   

10.
Preliminary studies establishing relationships between leaf plastochron index and Epilobium hirsutum L. shoot growth provide a method for rigorous selection of plants utilized in experiments designed to test the working hypothesis that endogenous auxin gradient interactions are factors of phyllotactic control in this species. Application of N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, to one of the youngest bijugate primordia on the shoot meristem results in increased growth of the treated primordium. Fasciation between the treated primordium and one of the next primordia to be initiated alters relative vertical spacing of primordia. Angular shifts between subsequent primordia result in spiral transformation of Epilobium bijugate phyllotaxy. Application of α-4-chlorophenoxyisobutyric acid (CPIB), an auxin antagonist, to one of the youngest bijugate primordia on the shoot meristem results in decreased growth of the treated primordium that alters both radial and vertical spacing of primordia. This is followed by angular shifts between subsequent primordia resulting in spiral transformation of the bijugate phyllotaxy. Changes in the growth parameters of NPA- and CPIB-treated shoots are similar. Relative plastochron rates of radial and vertical shoot growth of induced spiral shoots are about half those of lanolin paste control shoots, as are the plastochrons and relative plastochron rates of leaf elongation. Treated shoot meristems have eccentricities of 0.5 as compared to bijugate control meristem eccentricities of 0.7. No significant difference is apparent between basal transverse areas of treated and control shoot meristems. The relative chronological rates of growth of treated shoots are not significantly different from those rates of control shoots. Spiral transformation results from changes in relative positions of leaf primordia insertion on the shoot meristem, not from changes in growth of treated shoots. These changes are accompanied by an increased rate of leaf initiation on a more circular shoot meristem. Existing theoretical models of phyllotaxy are discussed in relation to these chemically induced changes of Epilobium leaf arrangement.  相似文献   

11.
We used an anti-indole acetic acid (IAA or auxin) monoclonal antibody-based immunocytochemical procedure to monitor IAA level in Arabidopsis tissues. Using immunocytochemistry and the IAA-driven beta-glucuronidase (GUS) activity of Aux/IAA promoter::GUS constructs to detect IAA distribution, we investigated the role of polar auxin transport in vascular differentiation during leaf development in Arabidopsis. We found that shoot apical cells contain high levels of IAA and that IAA decreases as leaf primordia expand. However, seedlings grown in the presence of IAA transport inhibitors showed very low IAA signal in the shoot apical meristem (SAM) and the youngest pair of leaf primordia. Older leaf primordia accumulate IAA in the leaf tip in the presence or absence of IAA transport inhibition. We propose that the IAA in the SAM and the youngest pair of leaf primordia is transported from outside sources, perhaps the cotyledons, which accumulate more IAA in the presence than in the absence of transport inhibition. The temporal and spatial pattern of IAA localization in the shoot apex indicates a change in IAA source during leaf ontogeny that would influence flow direction and, consequently, the direction of vascular differentiation. The IAA production and transport pattern suggested by our results could explain the venation pattern, and the vascular hypertrophy caused by IAA transport inhibition. An outside IAA source for the SAM supports the notion that IAA transport and procambium differentiation dictate phyllotaxy and organogenesis.  相似文献   

12.
Growth of Ranunculus shoots through ontogeny is quantified by techniques utilizing scanning electron microscopy and studies on living plant material. The order of the contact parastichy phyllotaxy in the apical system is related to the relative plastochron rates of growth of the shoot. There is a change in the (2, 3) contact parastichy pattern of vegetative phyllotaxy to a transitional (3, 5) contact pattern which is maintained through sepal production. Formation of a 5(1, 1) whorl of petal primordia establishes a (5, 8) contact pattern with the sepal primordia. Subsequent initiation of stamen primordia, in spiral sequence, results in (5, 8, 13) triple contacts between petal and stamen primordia. The stamen primordia and carpel primordia arrangement is characterized by a (8, 13) contact parastichy pattern of phyllotaxy. Through ontogeny the volume of the shoot apex progressively increases but the shape of the apex, described by a second degree polynomial, remains constant. The plastochron and the relative plastochron rates of radial and vertical displacement of primordia progressively decrease during transition but there is no alteration of the chronological rate of apical expansion. The change in contact parastichy phyllotaxy through ontogeny is interpreted as a change in the relative positions of primordia insertion on the apex resulting from an increase in apical volume and an increased rate of primordia initiation.  相似文献   

13.
Procambium was initially isolated near the insertions of lemma and stamen primordia in the grass Anthoxanthum. The palea was initiated before its procambium. The acropetal, continuous differentiation of procambium involved in the siting of leaves on shoots of many other megaphyllous plants, does not occur in the rachilla of this grass. A portion of the vascular system of the fertile floret of Anthoxanthum became connected with the vascular system of the rest of the spikelet by basipetal differentiation of the procambial trace of the fertile lemma. A core of residual meristem persisted in the fertile floret above the procambial trace to the fertile lemma. Vascular continuity between the procambial trace to the fertile lemma and the procambial traces of the stamens was achieved by the differentiation of procambium from this core of residual meristem.  相似文献   

14.
In this study we investigated Arabidopsis thaliana (L.) Heynh. inflorescence development by characterizing morphological changes at the shoot apex during the transition to flowering. Sixteen-hour photoperiods were used to synchronously induce flowering in vegetative plants grown for 30 d in non-inductive 8-h photoperiods. During the first inductive cycle, the shoot apical meristem ceased producing leaf primordia and began to produce flower primordia. The differentiation of paraclades (axillary flowering shoots), however, did not occur until after the initiation of multiple flower primordia from the shoot apical meristem. Paraclades were produced by the basipetal activation of buds from the axils of leaf primordia which had been initiated prior to photoperiodic induction. Concurrent with the activation of paraclades was the partial suppression of paraclade-associated leaf primordia, which became bract leaves. The suppression of bract-leaf primordia and the abrupt initiation of flower primordia during the first inductive photoperiod is indicative of a single phase change during the transition to flowering in photoperiodically induced Arabidopsis. Morphogenetic changes characteristic of the transition to flowering in plants grown continuously in 16-h photoperiods were qualitatively equivalent to the changes observed in plants which were photoperiodically induced after 30 d. These results suggest that Arabidopsis has only two phases of development, a vegetative phase and a reproductive phase; and that the production of flower primordia, the differentiation of paraclades from the axils of pre-existing leaf primordia and the elongation of internodes all occur during the reproductive phase.  相似文献   

15.
Parke , Robert V. (Colorado State U., Fort Collins.) Initial vascularization of the vegetative shoot, of Abies concolor. Amer. Jour. Bot. 50(5): 464–469. Illus. 1963.—In the dormant winter bud, the future vascular system of the shoot exists as a rather ill-defined system of procambial strands, which extends acropetally from the scale traces through a plate of thick-walled, deeply staining cells, the crown, and into the axis and the numerous foliar primordia making up the telescoped shoot. Each foliar primordium receives a single procambial strand or leaf trace. The procambial strands differentiate acropetally. No differentiated vascular tissue was observed in the dormant shoot. As the shoot elongates in the spring, vascular differentiation progresses at a rapid rate. In the leaf traces, protophloem differentiates acropetally. The protoxylem, which appears first in the axial region of the trace, differentiates acropetally into the foliar primordium and basipetally into the stem. The first-formed phloem elements are short-lived. They are nucleate and without sieve areas. In the protoxylem, the first-formed tracheids are mostly of the annular or spiral-thickened type.  相似文献   

16.
In Triticum aestivum L. the median and lateral procambial strandsserving the primordia originate independently and in isolationfrom the vascular system of the rest of the plant. The medianstrand is initiated first, followed by a succession of lateralstrands during the next four or so plastochrones. The medianand first lateral strands have their point of origin in theaxis, in the disc of insertion of the primordium. The laterlaterals are initiated up in the primordium. Once initiatedthe procambial strands extend from their point of origin bothacropetally and basipetally, the latter extension eventuallylinking them to strands associated with older leaves. It wouldappear that the materials necessary for the growth of the apicaldome and of the first four leaf primordia are supplied by generaldiffusion and not via direct vascular connexions with the restof the plant.  相似文献   

17.
Each of four amino acid conjugates of IAA was able to replacethe IAA requirement for xylogenesis in lettuce pith explants,when supplied at concentrations ten to 100 times those optimalfor IAA. Tracheary development induced by these conjugates tendedto be slightly slower and less in amount than with IAA, andthe tracheary strands shorter and less regular. Responses differedsomewhat among the four conjugates: IAA-D, L-aspartate gavedevelopment most like that with free IAA, and IAA-D, L-phenylalanineoften yielded the weakest tracheary development, while responsesto IAA-L-alanine and IAA-glycine were intermediate. The resultsare interpreted in terms of the ‘bound’ IAA conjugatesdiffusing into the pith explants and becoming xylogenic onlyon hydrolysis to ‘free’ IAA. As tracheary strandformation is believed to result from IAA fluxes, it seems thatthe free IAA also moved through the discs, presumably towardsthe surfaces where it degrades rapidly. Tracheary strand formationin these explants can be compared with vascular strand formationin the normal shoot tip, where IAA conjugates (auxin ‘precursors’)move acropetally and are hydrolysed to free IAA especially inthe young leaf primordia, we suggest, yielding local sourcesof IAA which may contribute both to the phyllotactic spacingof primordia and, moving basipetally, to the definition of theauxin pathways that develop as procambial strands behind individualleaf primordia. Lactuca sativa, lettuce, IAA conjugates, tracheary element differentiation, pith explants, xylem strands  相似文献   

18.
Clay NK  Nelson T 《The Plant cell》2002,14(11):2707-2722
The formation of the venation pattern in leaves is ideal for examining signaling pathways that recognize and respond to spatial and temporal information, because the pattern is two-dimensional and heritable and the resulting veins influence the three-dimensional spatial organization of the surrounding differentiating leaf cell types. We identified a provascular/procambial cell-specific gene that encodes a Leu-rich repeat receptor kinase, which we named VASCULAR HIGHWAY1 (VH1). A change in the expression domain and level of VH1 marks the transition from an uncommitted provascular state to a committed procambial state in early vascular development. The coding sequence, expression pattern, and transgenic phenotypes together suggest that VH1 transduces extracellular spatial and temporal signals into downstream cell differentiation responses in provascular/procambial cells.  相似文献   

19.
Surgical techniques were applied to the shoot apex of carrot(Daucus carota L.) to test the interpretation that provasculartissue is the initial stage of vascular differentiation andto localize the sources of the influences that control its differentiation.If the apex is isolated laterally by vertical incisions leavingit at the summit of a plug of pith tissue, vascular differentiationproceeds normally and an independent vascular system is formedin the pith plug. If all leaf primordia are systematically suppressed,provascular tissue continues to differentiate as an acropetalextension of the pre-existing vascular system but no furtherdifferentiation occurs. When the apex is isolated laterallyand all leaf primordia are suppressed, provascular tissue continuesto be formed acropetally and is extended basipetally into thepith plug by redifferentiation of pith cells, but no furtherdifferentiation occurs. This tissue reacts positively to histochemicaltests for esterase indicating its vascular nature. If only oneleaf primordium is allowed to develop on an isolated shoot apex,its vascular system develops normally and extends basipetallyinto the pith plug, but there is no extension of provasculartissue into the pith plug. These results support the interpretationthat the initial stage of vascular differentiation is controlledby the apical meristem but that further maturation of vasculartissue depends upon influences from developing leaf primordia.Copyright 2000 Annals of Botany Company Provascular tissue, differentiation, carrot (Daucus carota L.), shoot apex, surgical techniques, leaf primordia  相似文献   

20.
The ontogeny of Epilobium hirsutum grown under natural summer photoperiod in a glasshouse was divided into vegetative, early transitional, transitional, and floral stages. Bijugate phyllotaxy, common to both the vegetative and early transitional stages, is transformed into spiral phyllotaxy during the transitional stage by an initial change in the divergence angle of a single primordium inserted at a unique level on the shoot. Leaf primordia subsequently are inserted in a spiral arrangement in the indeterminate floral shoot apex. The early transitional shoot apical meristem is about 1.5 times the volume of the vegetative meristem but expands at about two-thirds the relative plastochron rate of volume increment of the vegetative meristem. There are progressive decreases in the plastochron and relative plastochron rates of radial and vertical shoot growth through ontogeny. Relative chronological rates of shoot growth, however, are not altered during ontogeny. Spiral transformation results from changes in the relative points of insertion of leaf primordia on the shoot meristem. These changes are accompanied by an increased rate of primordia initiation on a more circular shoot meristem. The change in phyllotaxy during ontogeny is similar to that which was artificially induced by chemical modification of auxin concentration gradients in the shoot apex, with the additional feature that there is an initial increase in the volume of the shoot meristem prior to the natural spiral transformation. Size of the shoot apical meristem, however, appears to have little influence on Epilobium phyllotaxy; but the geometric shape of the meristem is well correlated with bijugate to spiral transformations. This suggests that geometric parameters of the shoot meristem should be considered in theoretical models of phyllotaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号