首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungal multicopper oxidases have many potential industrial applications, since they perform reactions under mild conditions. We isolated a phenol oxidase from the fungus Acremonium murorum var. murorum that was capable of decolorizing plant chromophores (such as anthocyanins). This enzyme is of interest in laundry-cleaning products because of its broad specificity for chromophores. We expressed an A. murorum cDNA library in Saccharomyces cerevisiae and subsequently identified enzyme-producing yeast colonies based on their ability to decolor a plant chromophore. The cDNA sequence contained an open reading frame of 1,806 bp encoding an enzyme of 602 amino acids. The phenol oxidase was overproduced by Aspergillus awamori as a fusion protein with glucoamylase, cleaved in vivo, and purified from the culture broth by hydrophobic-interaction chromatography. The phenol oxidase is active at alkaline pH (the optimum for syringaldazine is pH 9) and high temperature (optimum, 60°C) and is fully stable for at least 1 h at 60°C under alkaline conditions. These characteristics and the high production level of 0.6 g of phenol oxidase per liter in shake flasks, which is equimolar with the glucoamylase protein levels, make this enzyme suitable for use in processes that occur under alkaline conditions, such as laundry cleaning.  相似文献   

2.
AIMS: Chaetomium thermophilum is a soil-borne thermophilic fungus whose molecular biology is poorly understood. Only a few genes have been cloned from the Chaetomium genus. This study attempted to clone, to sequence and to express a thermostable glucoamylase gene of C. thermophilum. METHODS AND RESULTS: First strand cDNA was prepared from total RNA isolated from C. thermophilum and the glucoamylase gene amplified by using PCR. Degenerate primers based on the N-terminal sequences of the purified glucoamylase according to our previous works and a cDNA fragment encoding the glucoamylase gene was obtained through RT-PCR. Using RACE-PCR, full-length cDNA of glucoamylase gene was cloned from C. thermophilum. The full-length cDNA of the glucoamylase was 2016 bp and contained a 1797-bp open reading frame encoding a protein glucoamylase precursor of 599 amino acid residues. The amino-acid sequence from 31 to 45 corresponded to the N-terminal sequence of the purified protein. The first 30 amino acids were presumed to be a signal peptide. The alignment results of the putative amino acid sequence showed the catalytic domain of the glucoamylase was high homology with the catalytic domains of the other glucoamylases. The C. thermophilum glucoamylase gene was expressed in Pichia pastoris, and the glucoamylase was secreted into the culture medium by the yeast in a functionally active form. The recombinant glucoamylase purified was a glycoprotein with a size of about 66 kDa, and exhibited optimum catalytic activity at pH 4.5-5.0 and 65 degrees C. The enzyme was stable at 60 degrees C, the enzyme activity kept 80% after 60 min incubation at 70 degrees C. The half-life was 40 and 10 min under incubation at 80 and 90 degrees C respectively. CONCLUSIONS: A new thermostable glucoamylase gene of C. thermophilum was cloned, sequenced, overexpressed successfully in P. pastoris. SIGNIFICANCE AND IMPACT OF THE STUDY: Because of its thermostability and overexpression, this glucoamylase enzyme offers an interesting potential in saccharification steps in both starch enzymatic conversion and in alcohol production.  相似文献   

3.
An enzyme showing alkaliphilic laccase activity was purified from the culture supernatant of Myrothecium verrucaria 24G-4. The enzyme was highly stable under alkaline conditions, showed an optimum reaction pH of 9.0 for 4-aminoantipyrine/phenol coupling, and decolorized synthetic dyes under alkaline conditions. It showed structural and catalytic similarities with bilirubin oxidase, but preferably oxidized phenolic compounds. The enzyme catalyzed veratryl alcohol oxidation at pH 9.0 with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as a mediator, suggesting that the laccase mediator system functioned well under alkaline conditions.  相似文献   

4.
The paper is concerned with conditions of glucoamylase binding with silanized silochrome using gossypol, dialdehyde isolated from cotton-plant. Kinetic properties of the immobilized enzyme are studied. The enzyme pH optimum does not change with immobilization and the temperature optimum is shifted from 50 degrees to 60 degrees C; a certain increase of the seeming Km is also observed. A high yield of the enzyme activity in immobilization evidences for the possibility of using gossypol as a binding agent in glucoamylase immobilization.  相似文献   

5.
Glucoamylase (E.C: 3.2.1.3, alpha-(1-->4)-glucan glucohydrolase) mainly hydrolyzes starch and has been extensively used in the starch, glucose (dextrose), and fermentation industries. Immobilized glucoamylase has an inherent disadvantage of lower conversion rates and low thermostability of less than 55 degrees C when used in continuous operations. We have developed crosslinked enzyme crystals (CLEC) of glucoamylase that overcome the above disadvantages, possess good thermal stability and retain 98.6% of their original activity at 70 degrees C for 1h, 77% activity at 80 degrees C for 1h, and 51.4% activity at 90 degrees C for 0.5h. CLEC glucoamylase has a specific activity of 0.0687 IU/mg and a yield of 50.7% of the original activity of the enzyme under optimum conditions with starch as the substrate. The crystals obtained are rhombohedral in shape having a size approximately 10-100 microm, a density of 1.8926 g/cm(3) and a surface area of 0.7867 m(2)/g. The pH optimum of the glucoamylase crystals was sharp at pH 4.5, unlike the soluble enzyme. The kinetic constants V(max) and K(m) exhibited a 10-fold increase as a consequence of crystallization and crosslinking. The continuous production of glucose from 10% soluble starch and 10% maltodextrin (12.5 DE) by a packed-bed reactor at 60 degrees C had a productivity of 110.58 g/L/h at a residence time of 7.6 min and 714.1g/L/h at a residence time of 3.4 min, respectively. The CLEC glucoamylase had a half-life of 10h with 4% starch substrate at 60 degrees C.  相似文献   

6.
Phenol oxidase (EC 1.14.18.1) from the microscopic fungus Mycelia sterilia IBR 35219/2 was immobilized using glutaraldehyde on macroporous silica carriers. The enzyme immobilized on amino-Silochrome SKh-2 or aminopropyl-Silochrome 350/80 exhibited maximum activity. Soluble and immobilized phenol oxidases were compared. Compared to the soluble enzyme, the activity of which was optimum at pH 5.5, immobilized phenol oxidase exhibited optimum activity under slightly more acidic conditions (pH 5.2). Immobilization considerably increased the enzyme stability. Both soluble and immobilized forms of phenol oxidase from M. sterilia IBR 35219/2 catalyze oxidative conversion of phenolic compounds of the green tea extract.  相似文献   

7.
Phenol oxidase (EC 1.14.18.1) from the microscopic fungusMycelia sterilia IBR 35219/2 was immobilized using glutaraldehyde on macroporous silica carriers. The enzyme immobilized on amino-Silochrome SKh-2 or aminopropyl-Silochrome 350/80 exhibited maximum activity. Soluble and immobilized phenol oxidases were compared. Compared to the soluble enzyme, the activity of which was optimum at pH 5.5, immobilized phenol oxidase exhibited optimum activity under slightly more acidic conditions (pH 5.2). Immobilization considerably increased enzyme stability. Both soluble and immobilized forms of phenol oxidase fromM. sterilia IBR 35 219/2 catalyze oxidative conversion of phenolic compounds of green tea extract.  相似文献   

8.
The glucoamylase from the thermophilic fungus Thermomyces lanuginosus has a molecular weight of 66 kDa and was characterized with isoelectric point, pH and temperature optimum of 3.8-4.0, 5.0 and 70 degrees C, respectively. In addition, the activation energy is 60.4 kJ/mol, Km is 3.5 mM and kcat is 25.3 s(-1). The glucoamylase was partially sequenced on the protein level, and the complete glucoamylase gene including its promoter (but excluding its terminator region) was cloned and sequenced. The glucoamylase protein comprises 617 amino acid residues and shows 60% identity with the glucoamylase from the thermophilic fungus Talaromyces emersonii. cDNA encoding Thermomyces lanuginosus glucoamylase was expression cloned into Pichia pastoris, producing approximately 7.4 U/ml. It was concluded that alternative mRNA splicing as it might occur in Aspergillus niger glucoamylase is not responsible for the occurrence of different glucoamylase isoforms in Thermomyces lanuginosus.  相似文献   

9.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

10.
Polyporus dichrous, a white-rot fungus previously shown to lack phenol oxidase activity when grown on agar media in the presence of a variety of phenolic compounds, was found to exhibit phenol oxidase activity upon aging when grown on a lignosulfonate-containing agar medium. The phenol oxidase activity was compared with that of Trametes versicolor grown under the same conditions, in terms of substrate specificity, pH optimum, and temperature sensitivity. The phenol oxidase activity of P. dichrous was intracellular of tyrosinase type, with a pH optimum around 5.5, and was heat-sensitive, having a half-life of 10 min at 60°C.  相似文献   

11.
The glucose isomerase from Streptomyces olivaceoviridis E-86 was purified by chromatographic procedures, showing one single protein band in the SDS-PAGE. The enzyme had high acid stability, and there was no loss in enzyme activity at pH 5.0 after incubation at 60 degrees C for 30 hr. The enzyme had sufficients activity at 60 degrees C, pH 5.5, (which is the reaction condition for a single-step process with a glucoamylase from A. niger), and at 58 degrees C, pH 6.0, (condition with a glucoamylase from R. niveus). By using this acid-stable glucose isomerase, a single-step process to produce high-fructose corn sweetener (HFCS) from liquefied starch was formed without any reductant or other reagents for enzyme stabilization. The HFCS produced was about fifty percent fructose and less than 1.5% unknown oligosaccharides.  相似文献   

12.
Thermostable amylolytic enzymes are currently being investigated to improve industrial processes of starch degradation. A thermostable extracellular glucoamylase (exo-1, 4-alpha-D-glucanohydrolase, E.C.3.2.1.3) from the culture supernatant of a thermophilic fungus Chaetomium thermophilum was purified to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) homogeneity by using ammonium sulfate fraction, DEAE-Sepharose Fast Flow chromatography, and Phenyl-Sepharose Fast Flow chromatography. SDS-PAGE of the purified enzyme showed a single protein band of molecular weight 64 kDa. The glucoamylase exhibited optimum catalytic activity at pH 4.0 and 65 degrees C. It was thermostable at 50 degrees C and 60 degrees C, and retained 50% activity after 60 min at 65 degrees C. The half-life of the enzyme at 70 degrees C was 20 min. N-terminal amino acid sequencing (15 residues) was AVDSYIERETPIAWN. Different metal ions showed different effects on the glucoamylase activity. Ca2+, Mg2+, Na+, and K+ enhanced the enzyme activity, whereas Fe2+, Ag+, and Hg2+ cause obvious inhibition. These properties make it applicable to other biotechnological purposes.  相似文献   

13.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

14.
15.
Non-ligninolytic fungal peroxidases produced by Coprinus cinereus UAMH 4103 and Coprinus sp. UAMH 10067 were purified, characterized and evaluated as cost-effective alternatives to horseradish peroxidase for aqueous phenol treatment. Purified Coprinus peroxidases exhibited a molecular weight of 36 kDa on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Although the catalytic properties of the two Coprinus peroxidases were nearly identical in both crude and purified forms, the stabilities were substantially different. The peroxidase from Coprinus sp. UAMH 10067 was more stable at 50 degrees C and under basic conditions (up to pH 10) than the enzyme from C. cinereus UAMH 4103. The former enzyme also performed better at pH 9 than the latter one in aqueous phenol treatment. The phenol removal efficiency of the Coprinus peroxidase was comparable to those of previously studied plant peroxidases. The broader working pH and higher thermal and alkaline stability of the peroxidase from Coprinus sp. UAMH 10067 may be advantageous for its application to industrial wastewater treatment.  相似文献   

16.
Laccase (oxygen oxidoreductase, EC 1.10.3.2) from Trametes versicolor was thoroughly characterized in terms of its catalytic stability and its effectiveness as a biocatalyst under various reaction conditions when using phenol as a model substrate. This enzyme demonstrated high or moderate degrees of stability at pHs from 5 to 8 at 25 degrees C and at temperatures from 10 to 30 degrees C at pH 6. Exponential decay expressions were successfully used to model laccase inactivation when incubated under various conditions of pH and temperature. Phenol transformation was optimum at pH 6, but significant transformation was observed over a pH range of 4-7, provided that sufficient laccase was present in the reacting solution. Partial inactivation of laccase was observed during the oxidation of phenol, even under conditions of optimal stability (pH 6 and 25 degrees C).  相似文献   

17.
Glucose oxidase from Aspergillus niger was immobilized on nonporous glass beads by covalent bonding and its kinetics were studied in a packed-column recycle reactor. The optimum pH of the immobilized enzyme was the same as that of soluble enzyme; however, immobilized glucose oxidase showed a sharper pH-activity profile than that of the soluble enzyme. The kinetic behavior of immobilized glucose oxidase at optimum pH and 25 degrees C was similar to that of the soluble enzyme, but the immobilized material showed increased temperature sensitivity. Immobilized glucose oxidase showed no loss in activity on storage at 4 degrees C for nearly ten weeks. On continuous use for 60 hr, the immobilized enzyme showed about a 40% loss in activity but no change in the kinetic constant.  相似文献   

18.
Thermostable amylolytic enzymes are currently investigated to improve industrial processes of starch degradation. Streptosporangium sp. an endophytic actinomycete isolated from leaves of maize (Zea mays L.) showed glucoamylase production, using starch-Czapek medium, and the highest rate was obtained in the initial growth phase, after incubation for 24 h at pH 8.0. Maximum glucoamylase activity (158 U mg(-1) protein) was obtained at pH 4.5 and 70 degrees C. The isolated enzyme exhibited thermostable properties as indicated by retention of 100% of residual activity at 70 degrees C for 30 min with total inhibition at 100 degrees C. Extracellular enzyme from Streptosporangium sp. was purified by fractionated precipitation with ammonium sulphate. After 60% saturation produced 421 U mg(-1) protein, and yield was 74% with purification 2.7 fold. The enzyme produced by Streptosporangium sp. has potential for industrial applications.  相似文献   

19.
The main proteinase of the filamentous fungus Colletotrichum gloeosporioides causing anthracnoses and serious problems for production and storage of agricultural products has molecular mass of 57 kD and was purified more than 200-fold to homogeneity with the yield of 5%. Maximal activity of the proteinase is at pH 9.0-10.0, and the enzyme is stable at pH 6.0-11.5 (residual activity not less than 70%). The studied enzyme completely kept its activity to 55 degrees C, with a temperature optimum of 45 degrees C. The purified C. gloeosporioides proteinase is stable at alkaline pH values, but rapidly loses its activity at pH values lower than 5.0. Addition of bovine serum albumin stabilizes the enzyme under acidic conditions. Data on inhibitor analysis and substrate specificity of the enzyme allow its classification as a serine proteinase of subtilisin family. It is demonstrated that the extracellular proteinase of C. gloeosporioides specifically effects plant cell wall proteins. It is proposed that the studied proteinase--via hydrolysis of cell wall--provides for penetration of the fungus into the tissues of the host plant.  相似文献   

20.
1. Highly purified preparations of glucoamylase were obtained from liver, spleen and intestine of the monkey. The enrichment factor was lower for intestine (60-fold) compared with that of liver (1200-fold) and of spleen (2000-fold) but the final specific activities were of a similar magnitude. 2. The liver and spleen enzymes had maximum activity at pH4.8 whereas the intestinal enzyme showed an optimum at pH5.8. The K(m) values for both starch and maltose with spleen and liver enzymes were higher than for the intestinal enzyme. With the intestinal enzyme, the V(max.) values were higher for both starch and maltose than those of the spleen and liver enzymes. 3. Gel filtration on Sephadex G-200 under identical conditions revealed that liver and spleen enzymes emerge from the columns much later than the intestinal enzyme. 4. Evidence is presented that the glucoamylase activity of the intestinal mucosa is exhibited by the maltase II fraction. 5. Tris, pentaerythritol and turanose inhibited glucoamylase from all the three tissues, but turanose inhibited the spleen and liver enzymes to a higher degree than the intestinal enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号