首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The neuroprotective properties of bis(7)-tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on glutamate-induced excitotoxicity were investigated in primary cultured cerebellar granule neurons (CGNs). Exposure of CGNs to 75 mum glutamate resulted in neuronal apoptosis as demonstrated by Hoechst staining, TUNEL, and DNA fragmentation assays. The bis(7)-tacrine treatment (0.01-1 mum) on CGNs markedly reduced glutamate-induced apoptosis in dose- and time-dependent manners. However, donepezil and other AChE inhibitors, even at concentrations of inhibiting AChE to the similar extents as 1 mum bis(7)-tacrine, failed to prevent glutamate-induced excitotoxicity in CGNs; moreover, both atropine and dihydro-beta-erythroidine, the cholinoreceptor antagonists, did not affect the anti-apoptotic properties of bis(7)-tacrine, suggesting that the neuroprotection of bis(7)-tacrine appears to be independent of inhibiting AChE and cholinergic transmission. In addition, ERK1/2 and p38 pathways, downstream signals of N-methyl-d-aspartate (NMDA) receptors, were rapidly activated after the exposure of glutamate to CGNs. Bis(7)-tacrine inhibited the apoptosis and the activation of these two signals with the same efficacy as the coapplication of PD98059 and SB203580. Furthermore, using fluorescence Ca(2+) imaging, patch clamp, and receptor-ligand binding techniques, bis(7)-tacrine was found effectively to buffer the intracellular Ca(2+) increase triggered by glutamate, to reduce NMDA-activated currents and to compete with [(3)H]MK-801 with an IC(50) value of 0.763 mum in rat cerebellar cortex membranes. These findings strongly suggest that bis(7)-tacrine prevents glutamate-induced neuronal apoptosis through directly blocking NMDA receptors at the MK-801-binding site, which offers a new and clinically significant modality as to how the agent exerts neuroprotective effects.  相似文献   

2.
Bis(7)-tacrine has been shown to prevent glutamate-induced neuronal apoptosis by blocking NMDA receptors. However, the characteristics of the inhibition have not been fully elucidated. In this study, we further characterize the features of bis(7)-tacrine inhibition of NMDA-activated current in cultured rat hippocampal neurons. The results show that with the increase of extracellular pH, the inhibitory effect decreases dramatically. At pH 8.0, the concentration-response curve of bis(7)-tacrine is shifted rightwards with the IC(50) value increased from 0.19+/-0.03 microM to 0.41+/-0.04 microM. In addition, bis(7)-tacrine shifts the proton inhibition curve rightwards. Furthermore, the inhibitory effect of bis(7)-tacrine is not altered by the presence of the NMDA receptor proton sensor shield spermidine. These results indicate that bis(7)-tacrine inhibits NMDA-activated current in a pH-dependent manner by sensitizing NMDA receptors to proton inhibition, rendering it potentially beneficial therapeutic effects under acidic conditions associated with stroke and ischemia.  相似文献   

3.
The retinal ischemia–reperfusion model has been studied extensively and is an ideal animal model for studying clinical situations such as acute glaucoma and optic neuropathy. Our previous reports showed that bis(7)-tacrine had neuroprotective effects against glutamate-induced retinal ganglion cells damage through the drug’s anti-NMDA receptor effects. Here, we investigated whether bis(7)-tacrine protects the retina from ischemic injury in a rat model. Retinal ischemia was induced by raising the intraocular pressure to 120 mmHg for 90 min. Rats received intraperitoneal injections of 0.2 mg/kg bis(7)-tacrine or saline at 30 min before ischemia, and then twice a day after retinal ischemia. Morphometric evaluation showed that bis(7)-tacrine dramatically reduced the retinal damage compared with the control group. Moreover, bis(7)-tacrine suppressed ischemia-induced reductions in a- and b-wave amplitudes of electroretinography. Protein levels of p53, the tumor suppressor gene known to induce apoptosis, were increased after ischemic injury, and treatment with bis(7)-tacrine reduced the expression of the protein. Our results suggest that bis(7)-tacrine has a neuroprotective effect against ischemic injury in the rat retina, possibly through the drug’s anti-apoptotic effects. Bis(7)-tacrine may potentially be useful as a therapeutic drug in the management of ischemic retinal diseases.  相似文献   

4.
Fu H  Li W  Lao Y  Luo J  Lee NT  Kan KK  Tsang HW  Tsim KW  Pang Y  Li Z  Chang DC  Li M  Han Y 《Journal of neurochemistry》2006,98(5):1400-1410
Beta amyloid protein (Abeta) and acetylcholinesterase (AChE) have been shown to be closely implicated in the pathogenesis of Alzheimer's disease. In the current study, we investigated the effects of bis(7)-tacrine, a novel dimeric AChE inhibitor, on Abeta-induced neurotoxicity in primary cortical neurons. Bis(7)-tacrine, but not other AChE inhibitors, elicited a marked reduction of both fibrillar and soluble oligomeric forms of Abeta-induced apoptosis as evidenced by chromatin condensation and DNA specific fragmentation. Both nicotinic and muscarinic receptor antagonists failed to block the effects of bis(7)-tacrine. Instead, nimodipine, a blocker of L-type voltage-dependent Ca2+ channels (VDCCs), attenuated Abeta neurotoxicity, whereas N-, P/Q- or R-type VDCCs blockers and ionotropic glutamate receptor antagonists did not. Fluorescence Ca2+ imaging assay revealed that, similar to nimodipine, bis(7)-tacrine reversed Abeta-triggered intracellular Ca2+ increase, which was mainly contributed by the extracellular Ca2+ instead of endoplasmic reticulum and mitochondria Ca2+. Concurrently, using whole cell patch-clamping technique, it was found that bis(7)-tacrine significantly reduced the augmentation of high voltage-activated inward calcium currents induced by Abeta. These results suggest that bis(7)-tacrine attenuates Abeta-induced neuronal apoptosis by regulating L-type VDCCs, offers a novel modality as to how the agent exerts neuroprotective effects.  相似文献   

5.
Mitochondrial dysfunction plays a central role in glutamate-evoked neuronal excitotoxicity, and mitochondrial fission/fusion dynamics are essential for mitochondrial morphology and function. Here, we establish a novel mechanistic linker among glutamate excitotoxicity, mitochondrial dynamics, and mitochondrial dysfunction in spinal cord motor neurons. Ca2+-dependent activation of the cysteine protease calpain in response to glutamate results in the degradation of a key mitochondrial outer membrane fusion regulator, mitofusin 2 (MFN2), and leads to MFN2-mediated mitochondrial fragmentation preceding glutamate-induced neuronal death. MFN2 deficiency impairs mitochondrial function, induces motor neuronal death, and renders motor neurons vulnerable to glutamate excitotoxicity. Conversely, MFN2 overexpression blocks glutamate-induced mitochondrial fragmentation, mitochondrial dysfunction, and/or neuronal death in spinal cord motor neurons both in vitro and in mice. The inhibition of calpain activation also alleviates glutamate-induced excitotoxicity of mitochondria and neurons. Overall, these results suggest that glutamate excitotoxicity causes mitochondrial dysfunction by impairing mitochondrial dynamics via calpain-mediated MFN2 degradation in motor neurons and thus present a molecular mechanism coupling glutamate excitotoxicity and mitochondrial dysfunction.  相似文献   

6.
Glutamate-mediated excitotoxicity is involved in many acute and chronic brain diseases. Dynamin related protein 1 (Drp-1), one of the GTPase family of proteins that regulate mitochondrial fission and fusion balance, is associated with apoptotic cell death in cancer and neurodegenerative diseases. Here we investigated the effect of downregulating Drp-1 on glutamate excitotoxicity-induced neuronal injury in HT22 cells. We found that downregulation of Drp-1 with specific small interfering RNA (siRNA) increased cell viability and inhibited lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Drp-1 also inhibited an increase in the Bax/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Drp-1 siRNA transfection preserved the mitochondrial membrane potential (MMP), reduced cytochrome c release, enhanced ATP production, and partly prevented mitochondrial swelling. In addition, Drp-1 knockdown attenuated glutamate-induced increases of cytoplasmic and mitochondrial Ca2+, and preserved the mitochondrial Ca2+ buffering capacity after excitotoxicity. Taken together, these results suggest that downregulation of Drp-1 protects HT22 cells against glutamate-induced excitatory damage, and this neuroprotection may be dependent at least in part on the preservation of mitochondrial function through regulating intracellular calcium homeostasis.  相似文献   

7.
Glutamate-mediated excitotoxicity, which is associated with reactive oxygen species (ROS), is hypothesized to be a major contributor to pathological cell death in the mammalian central nervous system, and to be involved in many acute and chronic brain diseases. Here, we showed that isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis (Gu), one of the most frequently prescribed oriental herbal medicines, protected HT22 hippocampal neuronal cells from glutamate-induced oxidative stress. In addition, we clarified the molecular mechanisms by which it protects against glutamate-induced neuronal cell death. ISL reversed glutamate-induced ROS production and mitochondrial depolarization, as well as glutamate-induced changes in expression of the apoptotic regulators Bcl-2 and Bax. Pretreatment of HT22 cells with ISL suppresses the release of apoptosis-inducing factor from mitochondria into the cytosol. Taken together, our results suggest that ISL may protect against mitochondrial dysfunction by limiting glutamate-induced oxidative stress. In conclusion, our results demonstrated that ISL isolated from Gu has protective effects against glutamate-induced mitochondrial damage and hippocampal neuronal cell death. We expect ISL to be useful in the development of drugs to prevent or treat neurodegenerative diseases.  相似文献   

8.
The glutamate-induced excitotoxicity pathway has been reported in several neurodegenerative diseases. Molecules that inhibit the release of glutamate or cause the overactivation of glutamate receptors can minimize neuronal cell death in these diseases. Osmotin, a homolog of mammalian adiponectin, is a plant protein from Nicotiana tabacum that was examined for the first time in the present study to determine its protective effects against glutamate-induced synaptic dysfunction and neurodegeneration in the rat brain at postnatal day 7. The results indicated that glutamate treatment induced excitotoxicity by overactivating glutamate receptors, causing synaptic dysfunction and neuronal apoptosis after 4 h in the cortex and hippocampus of the postnatal brain. In contrast, post-treatment with osmotin significantly reversed glutamate receptor activation, synaptic deficit and neuronal apoptosis by stimulating the JNK/PI3K/Akt intracellular signaling pathway. Moreover, osmotin treatment abrogated glutamate-induced DNA damage and apoptotic cell death and restored the localization and distribution of p53, p-Akt and caspase-3 in the hippocampus of the postnatal brain. Finally, osmotin inhibited glutamate-induced PI3K-dependent ROS production in vitro and reversed the cell viability decrease, cytotoxicity and caspase-3/7 activation induced by glutamate. Taken together, these results suggest that osmotin might be a novel neuroprotective agent in excitotoxic diseases.  相似文献   

9.
The regulation of α-, β-, (BACE-1), and γ-secretase activities to alter β-amyloid (Aβ) generation is considered to be one of the most promising disease-modifying therapeutics for Alzheimer’s disease. In this study, the effect and mechanisms of bis(7)-tacrine (a promising anti-Alzheimer’s dimer) on Aβ generation were investigated. Bis(7)-tacrine (0.1-3 μM) substantially reduced the amounts of both secreted and intracellular Aβ in Neuro2a APPswe cells without altering the expression of APP. sAPPα and CTFα increased, while sAPPβ and CTFβ decreased significantly in Neuro2a APPswe cells following the treatment with bis(7)-tacrine, indicating that bis(7)-tacrine might activate α-secretase and/or inhibit BACE-1 activity. Furthermore, bis(7)-tacrine concentration-dependently inhibited BACE-1 activity in cultured cells, and also in recombinant human BACE-1 in a non-competitive manner with an IC50 of 7.5 μM, but did not directly affect activities of BACE-2, Cathepsin D, α- or γ-secretase. Taken together, our results not only suggest that bis(7)-tacrine may reduce the biosynthesis of Aβ mainly by directly inhibiting BACE-1 activity, but also provide new insights into the rational design of novel anti-Alzheimer’s dimers that might have disease-modifying properties.  相似文献   

10.
Minocycline has been shown to have remarkably neuroprotective qualities, but underlying mechanisms remain elusive. We reported here the robust neuroprotection by minocycline against glutamate-induced apoptosis through regulations of p38 and Akt pathways. Pre-treatment of cerebellar granule neurons (CGNs) with minocycline (10-100 microm) elicited a dose-dependent reduction of glutamate excitotoxicity and blocked glutamate-induced nuclear condensation and DNA fragmentations. Using patch-clamping and fluorescence Ca2+ imaging techniques, it was found that minocycline neither blocked NMDA receptors, nor reduced glutamate-caused rises in intracellular Ca2+. Instead, confirmed by immunoblots, minocycline in vivo and in vitro was shown to directly inhibit the activation of p38 caused by glutamate. A p38-specific inhibitor, SB203580, also attenuated glutamate excitotoxicity. Furthermore, the neuroprotective effects of minocycline were blocked by phosphatidylinositol 3-kinase (PI3-K) inhibitors LY294002 and wortmannin, while pharmacologic inhibition of glycogen synthase kinase 3beta (GSK3beta) attenuated glutamate-induced apoptosis. In addition, immunoblots revealed that minocycline reversed the suppression of phosphorylated Akt and GSK3beta caused by glutamate, as were abolished by PI3-K inhibitors. These results demonstrate that minocycline prevents glutamate-induced apoptosis in CGNs by directly inhibiting p38 activity and maintaining the activation of PI3-K/Akt pathway, which offers a novel modality as to how the drug exerts protective effects.  相似文献   

11.
We have screened new drugs with a view to developing effective drugs against glutamate-induced excitotoxicity. In the present work, we show effects of a new drug, 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride against glutamate-induced excitotoxicity in primary rat glial cultures. Pretreatment of glial cells with 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride for 2 h significantly protected glial cells against glutamate-induced excitotoxicity in a time- and dose-dependent manner with an optimum concentration of 100 μM. The drug significantly reduced production of proinflammatory cytokines, tumor necrosis factor-α, and interlukin-1β in glutamate-induced excitotoxicity. The drug also prevented glutamate-induced intracellular Ca2+ influx and reduced the subsequent overproduction of nitric oxide and reactive oxygen species. Furthermore, the drug preserved the mitochondrial potential and inhibited the overproduction of cytochrome c. In addition, the drug effectively attenuated the protein level changes of β-catenin and glycogen synthase kinase-3β. These results suggest that 2-cyclopropylimino-3-methyl-1,3-thiazoline hydrochloride effectively protected primary cultures of rat glial cells against glutamate-induced excitotoxicity.  相似文献   

12.
13.
Glutamate excitotoxicity may culminate with neuronal and glial cell death. Glutamate induces apoptosis in vivo and in cell cultures. However, glutamate-induced apoptosis and the signaling pathways related to glutamate-induced cell death in acute hippocampal slices remain elusive. Hippocampal slices exposed to 1 or 10 mM glutamate for 1 h and evaluated after 6 h, showed reduced cell viability, without altering membrane permeability. This action of glutamate was accompanied by cytochrome c release, caspase-3 activation and DNA fragmentation. Glutamate at low concentration (10 μM) induced caspase-3 activation and DNA fragmentation, but it did not cause cytochrome c release and, it did not alter the viability of slices. Glutamate-induced impairment of hippocampal cell viability was completely blocked by MK-801 (non-competitive antagonist of NMDA receptors) and GAMS (antagonist of KA/AMPA glutamate receptors). Regarding intracellular signaling pathways, glutamate-induced cell death was not altered by a MEK1 inhibitor, PD98059. However, the p38MAPK inhibitor, SB203580, prevented glutamate-induced cell damage. In the present study we have shown that glutamate induces apoptosis in hippocampal slices and it causes an impairment of cell viability that was dependent of ionotropic and metabotropic receptors activation and, may involve the activation of p38MAPK pathway.  相似文献   

14.
We have previously reported that bis(propyl)-cognitin (B3C), similar to memantine (MEM), is an uncompetitive N-methyl-d-aspartate receptor antagonist with fast off-rate property. In the current study, we further demonstrated that in primary cultures of rat cerebellar granule neurons (CGNs), 2 h pretreatment of B3C (IC50, 0.45 μM) prevented glutamate-induced excitotoxicity 10 times more potently than memantine (IC50, 4.58 μM), as evidenced by cell viability and lactate dehydrogenase release assays. Additionally, B3C pretreatment could inhibit the increase of intracellular nitric oxide (NO) and the activation of phosphorylated ERK, and reverse the suppression of phosphorylated Akt and GSK3β caused by glutamate. Furthermore, the neuroprotection of B3C was abolished by phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002. Meanwhile, pharmacological inhibition showed that neither the single specific inhibitors of nitric oxide synthase (L-NMMA), MEK1/2 (U0126) and GSK3β (SB415286 and LiCl) nor the combinations of any two of them could fully protect against glutamate-induced apoptosis. However, the co-application of these three inhibitors produced nearly 100% inhibition of glutamate-induced apoptosis. These results taken together suggest that B3C elicits neuroprotection against glutamate-induced neurotoxicity in CGNs via concurrent inhibition of NO, MAPK/ERK pathways and activation of PI3-K/Akt/GSK3β pathway. Combining these and our previous publications, it is conjectured that the dimer might be an ideal candidate drug in delaying the course of neurodegeneration related with Alzheimer’s disease.  相似文献   

15.
The accumulation of glutamate can excessively activate the N-methyl-d-aspartate (NMDA) receptors and cause excitotoxicity. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside, Vit) is a c-glycosylated flavone which was found in the several herbs, exhibiting potent hypotensive, anti-inflammatory, and neuroprotective properties. However, little is known about the neuroprotective effects of Vit on glutamate-induced excitotoxicity. In present study, primary cultured cortical neurons were treated with NMDA to induce the excitotoxicity. Pretreatment with Vit significantly prevented NMDA-induced neuronal cell loss and reduced the number of apoptotic neurons. Vit significantly inhibited the neuronal apoptosis induced by NMDA exposure by regulating balance of Bcl-2 and Bax expression and the cleavages of poly (ADP-ribose) polymerase and pro-caspase 3. Furthermore, pretreatment of Vit reversed the up-regulation of NR2B-containing NMDA receptors and the intracellular Ca2+ overload induced by NMDA exposure. The neuroprotective effects of Vit are related to inhibiting the activities of NR2B-containing NMDA receptors and reducing the calcium influx in cultured cortical neurons.  相似文献   

16.
17.
Glutamate-induced excitotoxicity is one of the major underlying mechanisms for neurodegenerative diseases. Efforts are being made to treat such conditions with an array of natural compounds that can modulate the release of glutamate or the underlying mechanisms associated with it. Withania somnifera extract has potent pharmacologic activity similar to that of Korean Ginseng tea and is used to treat several neuronal disorders. However, to date, little efforts have been made to evaluate individual constituents of this plant for neurodegenerative disorders. Present study was carried out to investigate withanolide-A, one of the active constituents of Withania somnifera against glutamate-induced excitotoxicity in retinoic acid differentiated Neuro2a neuroblastoma cells. The results indicated that glutamate treatment for 2 h induced death in cells that was significantly attenuated by pre-treatment with MK-801 (specific NMDA receptor antagonist) and different concentrations of withanolide-A. Withanolide-A abated the glutamate-induced influx of intracellular calcium and excessive ROS production significantly. Further on, glutamate treatment resulted in increased levels of pro-apoptotic and decreased levels of anti-apoptotic proteins, and these protein levels were normalized by various doses of withanolide-A. All of these protective effects were partly due to inhibition of MAPK family proteins and activation of PI3K/Akt signaling. Thus, our results suggest that withanolide-A may serve as potential neuroprotective agent.  相似文献   

18.
The excitotoxicity of glutamate plays an important role in the progression of various neurological disorders via participating in inflammation and neuronal damage. In this study, we identified the role of excessive glutamate stimulation in the modulation of angiotensin-converting enzyme type 2 (ACE2), a critical component in the compensatory axis of the renin–angiotensin system (RAS). In primary cultured cortical neurons, high concentration of glutamate (100 µM) significantly reduced the enzymatic activity of ACE2. The elevated activity of ADAM17, a member of the ‘A Disintegrin And Metalloprotease’ (ADAM) family, was found to contribute to this glutamate-induced ACE2 down-regulation. The decrease of ACE2 activity could be prevented by pre-treatment with antagonists targeting ionotropic glutamate receptors. In addition, the glutamate-induced decrease in ACE2 activity was significantly attenuated when the neurons were co-treated with MitoTEMPOL or blockers that target oxidative stress-mediated signaling pathway. In summary, our study reveals a strong relationship between excessive glutamate stimulation and ADAM17-mediated impairment in ACE2 activity, suggesting a possible cross-talk between glutamate-induced excitotoxicity and dysregulated RAS.  相似文献   

19.
Neurodegenerative disorders affecting the central nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's chorea (HD) and amyotrophic lateral sclerosis are characterized by the loss of selected neuronal populations. Another striking feature shared by these diseases is the deposition of proteinaceous inclusion bodies in the brain, which may be intracytoplasmatic or intranuclear, or even extracellular. However, the density and prevalence of aggregates are not always directly related to neurodegeneration. Although some of these diseases are the result of mutations in known proteins, with HD a clear example, the expression and location of the affected protein do not explain the selective neurodegeneration. Therefore, other intrinsic mechanisms, characteristic of each neuronal population, might be involved in the neurodegenerative process. In this review we focus on several proposed mechanisms such as excitotoxicity, mitochondrial dysfunction and altered expression of trophic factors, which could account for the pathogenesis of HD.  相似文献   

20.
Lee Y  Park HW  Park SG  Cho S  Myung PK  Park BC  Lee do H 《Proteomics》2007,7(2):185-193
In the present study, we have investigated the proteome changes associated with glutamate-induced HT22 cell death, a model system to study oxidative stress-mediated toxicity. Among a number of HT22 proteins exhibiting altered expression, several molecular chaperones demonstrated substantial changes. For example, the levels of Hsp90 and Hsp70 decreased as cell death progressed whereas that of Hsp60 increased dramatically. Interestingly, cytosolic Hsp60 increased more prominently than mitochondrial Hsp60. Concomitantly, the accumulation of poly-ubiquitylated proteins and differential regulation of the peptidase activities and the subunits of 26S proteasomes were observed in glutamate-treated HT22 cells. Our findings that the molecular chaperones and the ubiquitin-proteasome system undergo changes during glutamate-induced HT22 cell death may suggest the importance of a protein quality control system in oxidative damage-mediated toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号