首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
10-Formyltetrahydrofolate dehydrogenase (FDH) converts 10-formyltetrahydrofolate, a precursor for nucleotide biosynthesis, to tetrahydrofolate. The protein comprises two functional domains: a hydrolase domain that removes a formyl group from 10-formyltetrahydrofolate and a NADP(+)-dependent dehydrogenase domain that reduces the formyl to carbon dioxide. As a first step toward deciphering the catalytic mechanism of the enzyme, we have determined the crystal structure of the hydrolase domain of FDH from rat, solved to 2.3-A resolution. The structure comprises two domains. As expected, domain 1 shares the same Rossmann fold as the related enzymes, methionyl-tRNA-formyltransferase and glycinamide ribonucleotide formyltransferase, but, unexpectedly, the structural similarity between the amino-terminal domain of 10-formyltetrahydrofolate dehydrogenase and methionyl-tRNA-formyltransferase extends to the C terminus of both proteins. The active site contains a molecule of beta-mercaptoethanol that is positioned between His-106 and Asp-142 and that appears to mimic the formate product. We propose a catalytic mechanism for the hydrolase reaction in which Asp-142 polarizes the catalytic water molecule and His-106 orients the carbonyl group of formyl. The structure also provides clues as to how, in the native enzyme, the hydrolase domain transfers its product to the dehydrogenase domain.  相似文献   

2.
The structure of the antifungal drug target homoserine dehydrogenase (HSD) was determined from Saccharomyces cerevisiae in apo and holo forms, and as a ternary complex with bound products, by X-ray diffraction. The three forms show that the enzyme is a dimer, with each monomer composed of three regions, the nucleotide-binding region, the dimerization region and the catalytic region. The dimerization and catalytic regions have novel folds, whereas the fold of the nucleotide-binding region is a variation on the Rossmann fold. The novel folds impose a novel composition and arrangement of active site residues when compared to all other currently known oxidoreductases. This observation, in conjunction with site-directed mutagenesis of active site residues and steady-state kinetic measurements, suggest that HSD exhibits a new variation on dehydrogenase chemistry.  相似文献   

3.
10-Formyltetrahydrofolate dehydrogenase (EC 1.5.1.6) catalyzes the NADP-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Previous studies of 10-formyltetrahydrofolate dehydrogenase purified from rat or pig liver homogenized in phosphate buffers indicated the presence of copurifying 10-formyltetrahydrofolate hydrolase activity, which catalyzes conversion of 10-formyltetrahydrofolate to tetrahydrofolate and formate. We find that the supernatant from rat liver homogenized in mannitol/sucrose/EDTA medium contains essentially all of the total cellular 10-formyltetrahydrofolate dehydrogenase activity, but no measurable hydrolase activity. Treating mannitol/sucrose/EDTA-washed mitochondria with Triton X-100 (0.5%) releases hydrolase activity in soluble form. 10-Formyltetrahydrofolate dehydrogenase purified from the mannitol/sucrose/EDTA supernatant has no 10-formyltetrahydrofolate hydrolase activity. Results of kinetic experiments using the hydrolase-free dehydrogenase give a complex rate equation with respect to (6R,S)-10-formyltetrahydrofolate. Double-reciprocal plots fit a 2/1 hyperbolic function with apparent Km values of 3.9 and 68 microM. Our results indicate that 10-formyltetrahydrofolate hydrolase and dehydrogenase are not alternate catalytic activities of a single protein, but represent two closely related and separately compartmentalized hepatic enzymes.  相似文献   

4.
This research describes four X-ray structures of Vibrio harveyi chitinase A and its catalytically inactive mutant (E315M) in the presence and absence of substrates. The overall structure of chitinase A is that of a typical family-18 glycosyl hydrolase comprising three distinct domains: (i) the amino-terminal chitin-binding domain; (ii) the main catalytic (α/β)8 TIM-barrel domain; and (iii) the small (α + β) insertion domain. The catalytic cleft of chitinase A has a long, deep groove, which contains six chitooligosaccharide ring-binding subsites (−4)(−3)(−2)(−1)(+1)(+2). The binding cleft of the ligand-free E315M is partially blocked by the C-terminal (His)6-tag. Structures of E315M-chitooligosaccharide complexes display a linear conformation of pentaNAG, but a bent conformation of hexaNAG. Analysis of the final 2Fo − Fc omit map of E315M-NAG6 reveals the existence of the linear conformation of the hexaNAG at a lower occupancy with respect to the bent conformation. These crystallographic data provide evidence that the interacting sugars undergo conformational changes prior to hydrolysis by the wild-type enzyme.  相似文献   

5.
The enzyme 10-formyltetrahydrofolate dehydrogenase (FDH) catalyzes conversion of 10-formyltetrahydrofolate to tetrahydrofolate in either a dehydrogenase or hydrolase reaction. The hydrolase reaction occurs in a 310-residue amino-terminal domain of FDH (N(t)-FDH), whereas the dehydrogenase reaction requires the full-length enzyme. N(t)-FDH shares some sequence identity with several 10-formyltetrahydrofolate-utilizing enzymes. All these enzymes have a strictly conserved aspartate, which is Asp(142) in the case of N(t)-FDH. Replacement of the aspartate with alanine, asparagine, glutamate, or glutamine in N(t)-FDH resulted in complete loss of hydrolase activity. All the mutants, however, were able to bind folate, although with lower affinity than wild-type N(t)-FDH. Six other aspartate residues located near the conserved Asp(142) were substituted with an alanine, and these substitutions did not result in any significant changes in the hydrolase activity. The expressed D142A mutant of the full-length enzyme completely lost both hydrolase and dehydrogenase activities. This study shows that Asp(142) is an essential residue in the enzyme mechanism for both the hydrolase and dehydrogenase reactions of FDH, suggesting that either the two catalytic centers of FDH are overlapped or the dehydrogenase reaction occurs within the hydrolase catalytic center.  相似文献   

6.
We have isolated and characterized cDNA clones encoding rat liver cytosol 10-formyltetrahydrofolate dehydrogenase (EC 1.5.1.6). An open reading frame of 2706 base pairs encodes for 902 amino acids of Mr 99,015. The deduced amino acid sequence contains exact matches to the NH2-terminal sequence (28 residues) and the sequences of five peptides derived from cyanogen bromide cleavage of the purified protein. The amino acid sequence of 10-formyltetrahydrofolate dehydrogenase has three putative domains. The NH2-terminal sequence (residues 1-203) is 24-30% identical to phosphoribosylglycinamide formyltransferase (EC 2.1.2.2) from Bacillus subtilis (30%), Escherichia coli (24%), Drosophila melanogaster (24%), and human hepatoma HepG2 (27%). Residues 204-416 show no extensive homology to any known protein sequence. Sequence 417-900 is 46% (mean) identical to the sequences of a series of aldehyde dehydrogenase (NADP+) (EC 1.2.1.3). Intact 10-formyltetrahydrofolate dehydrogenase exhibits NADP-dependent aldehyde dehydrogenase activity. The sequence identity to phosphoribosylglycinamide formyltransferase is discussed, and a binding region for 10-formyltetrahydrofolate is proposed.  相似文献   

7.
Arginine deiminase (ADI), an enzyme that hydrolyzes arginine to generate energy in many parasitic microorganisms, has potent anticancer activities and can halt growth of solid tumors. We determined the crystal structure of ADI from Mycoplasma arginini in two different forms (1.6 and 2.0 A resolution) using multiple isomorphous replacement. ADI shares common structural features with the arginine-catabolizing enzymes Arg:Gly amidinotransferase and dimethylarginine dimethyl-aminohydrolase; ADI contains an additional domain of five helices. The scissile C-N bonds of the substrates and the catalytic triads (Cys398-His269-Glu213 of ADI) for the three enzymes superimpose on each other. The ADI structure from form I crystals corresponds to a tetrahedral intermediate with four heteroatoms (1S, 2N, 1O) covalently bonded to the reaction-center carbon. The structure from form II crystals represents an amidino-enzyme complex; the reaction-center carbon is covalently bonded to Cys398 sulfur and two nitrogens, and the reacting water molecule is only 2.54 A away.  相似文献   

8.
Integrase plays a critical role in the recombination of viral DNA into the host genome. Therefore, over the past decade, it has been a hot target of drug design in the fight against type 1 human immunodeficiency virus (HIV-1). Bovine immunodeficiency virus (BIV) integrase has the same function as HIV-1 integrase. We have determined crystal structures of the BIV integrase catalytic core domain (CCD) in two different crystal forms at a resolution of 2.45? and 2.2?, respectively. In crystal form I, BIV integrase CCD forms a back-to-back dimer, in which the two active sites are on opposite sides. This has also been seen in many of the CCD structures of HIV-1 integrase that were determined previously. However, in crystal form II, BIV integrase CCD forms a novel face-to-face dimer in which the two active sites are close to each other. Strikingly, the distance separating the two active sites is approximately 20 ?, a distance that perfectly matches a 5-base pair interval. Based on these data, we propose a model for the interaction of integrase with its target DNA, which is also supported by many published biochemical data. Our results provide important clues for designing new inhibitors against HIV-1.  相似文献   

9.
Zhang L  Ahvazi B  Szittner R  Vrielink A  Meighen E 《Biochemistry》2000,39(47):14409-14418
Aldehyde dehydrogenases (ALDHs) catalyze the transfer to NAD(P) of a hydride ion from a thiohemiacetal derivative of the aldehyde coupled with a cysteine residue in the active site. In Vibrio harveyi aldehyde dehydrogenase (Vh-ALDH), a histidine residue (H450) is in proximity (3.8 A) to the cysteine nucleophile (C289) and is thus capable of increasing its reactivity in sharp contrast to other ALDHs in which more distantly located glutamic acid residues are proposed to act as the general base. Mutation of H450 in Vh-ALDH to Gln and Asn resulted in loss of dehydrogenase, (thio)esterase, and acyl-CoA reductase activities; the residual activity of H450Q was higher than that of the H450N mutant in agreement with the capability of Gln but not Asn to partially replace the epsilon-imino group of H450. Coupled with a change in the rate-limiting step, these results indicate that H450 increases the reactivity of C289. Moreover, for the first time, the acylated enzyme intermediate could be directly monitored after reaction with [(3)H]tetradecanoyl-CoA showing that the H450Q mutant was acylated more rapidly than the H450N mutant. Inactivation of the wild-type enzyme with N-ethylmaleimide was much more rapid than the H450Q mutant which in turn was faster than the H450N mutant, demonstrating directly that the nucleophilicity of C289 was affected by H450. As the glutamic acid residue implicated as the general base in promoting cysteine nucleophilicity in other ALDHs is conserved in Vh-ALDH, elucidation of why a histidine residue has evolved to assist in this function in Vh-ALDH will be important to understand the mechanism of ALDHs in general, as well as help delineate the specific roles of the active site glutamic acid residues.  相似文献   

10.
The fatty aldehyde dehydrogenase (Vh-ALDH) isolated from the luminescent bacterium, Vibrio harveyi, differs from other aldehyde dehydrogenases in its high affinity for NADP(+). The binding of NADP(+) appears to arise from the interaction of the 2'-phosphate of the adenosine moiety of NADP(+) with a threonine (T175) in the nucleotide recognition site just after the beta(B) strand as well as with an arginine (R210) that pi stacks over the adenosine moiety. The active site of Vh-ALDH contains the usual suspects of a cysteine (C289), two glutamates (E253 and E377) and an asparagine (N147) involved in the aldehyde dehydrogenase mechanism. However, Vh-ALDH has one polar residue in the active site that distinguishes it from other ALDHs; a histidine (H450) is in close contact with the cysteine nucleophile. As a glutamate has been implicated in promoting the nucleophilicity of the active site cysteine residue in ALDHs, the close contact of a histidine with the cysteine nucleophile in Vh-ALDH raises the possibility of alternate routes to increase the reactivity of the cysteine nucleophile. The effects of mutation of these residues on the different functions catalyzed by Vh-ALDH including acylation, (thio)esterase, reductase and dehydrogenase activities should help define the specific roles of the residues in the active site of ALDHs.  相似文献   

11.
The fatty aldehyde dehydrogenase (Vh-ALDH) isolated from the luminescent bacterium, Vibrio harveyi, differs from other aldehyde dehydrogenases in its high affinity for NADP+. The binding of NADP+ appears to arise from the interaction of the 2′-phosphate of the adenosine moiety of NADP+ with a threonine (T175) in the nucleotide recognition site just after the βB strand as well as with an arginine (R210) that pi stacks over the adenosine moiety. The active site of Vh-ALDH contains the usual suspects of a cysteine (C289), two glutamates (E253 and E377) and an asparagine (N147) involved in the aldehyde dehydrogenase mechanism. However, Vh-ALDH has one polar residue in the active site that distinguishes it from other ALDHs; a histidine (H450) is in close contact with the cysteine nucleophile. As a glutamate has been implicated in promoting the nucleophilicity of the active site cysteine residue in ALDHs, the close contact of a histidine with the cysteine nucleophile in Vh-ALDH raises the possibility of alternate routes to increase the reactivity of the cysteine nucleophile. The effects of mutation of these residues on the different functions catalyzed by Vh-ALDH including acylation, (thio)esterase, reductase and dehydrogenase activities should help define the specific roles of the residues in the active site of ALDHs.  相似文献   

12.
Absent, small, or homeotic disc1 (Ash1) is a trithorax group histone methyltransferase that is involved in gene activation. Although there are many known histone methyltransferases, their regulatory mechanisms are poorly understood. Here, we present the crystal structure of the human ASH1L catalytic domain, showing its substrate binding pocket blocked by a loop from the post-SET domain. In this configuration, the loop limits substrate access to the active site. Mutagenesis of the loop stimulates ASH1L histone methyltransferase activity, suggesting that ASH1L activity may be regulated through the loop from the post-SET domain. In addition, we show that human ASH1L specifically methylates histone H3 Lys-36. Our data implicate that there may be a regulatory mechanism of ASH1L histone methyltransferases.  相似文献   

13.
The catalytic domain of matrix metalloproteinase-10 (MMP-10) has been expressed in Escherichia coli and its crystal structure solved at 2.1 A resolution. The availability of this structure allowed us to critically examine the small differences existing between the catalytic domains of MMP-3 and MMP-10, which show the highest sequence identity among all MMPs. Furthermore, the binding mode of N-isobutyl-N-[4-methoxyphenylsulfonyl]glycyl hydroxamic acid (NNGH), which is one of the most known commercial inhibitors of MMPs, is described for the first time.  相似文献   

14.
Zhang C  Liu L  Xu H  Wei Z  Wang Y  Lin Y  Gong W 《Journal of molecular biology》2007,366(5):1437-1446
Type I isopentenyl diphosphate (IPP): dimethylally diphosphate (DMAPP) isomerase is an essential enzyme in human isoprenoid biosynthetic pathway. It catalyzes isomerization of the carbon-carbon double bonds in IPP and DMAPP, which are the basic building blocks for the subsequent biosynthesis. We have determined two crystal structures of human IPP isomerase I (hIPPI) under different crystallization conditions. High similarity between structures of human and Escherichia coli IPP isomerases proves the conserved catalytic mechanism. Unexpectedly, one of the hIPPI structures contains a natural substrate analog ethanol amine pyrophosphate (EAPP). Based on this structure, a water molecule is proposed to be the direct proton donor for IPP and different conformations of IPP and DMAPP bound in the enzyme are also proposed. In addition, structures of human IPPI show a flexible N-terminal alpha-helix covering the active pocket and blocking the entrance, which is absent in E. coli IPPI. Besides, the active site conformation is not the same in the two hIPPI structures. Such difference leads to a hypothesis that substrate binding induces conformational change in the active site. The inhibition mechanism of high Mn(2+) concentrations is also discussed.  相似文献   

15.
MauG is a diheme enzyme responsible for the post-translational formation of the catalytic tryptophan tryptophylquinone (TTQ) cofactor in methylamine dehydrogenase (MADH). MauG can utilize hydrogen peroxide, or molecular oxygen and reducing equivalents, to complete this reaction via a catalytic bis-Fe(IV) intermediate. Crystal structures of diferrous, Fe(II)-CO, and Fe(II)-NO forms of MauG in complex with its preMADH substrate have been determined and compared to one another as well as to the structure of the resting diferric MauG-preMADH complex. CO and NO each bind exclusively to the 5-coordinate high-spin heme with no change in ligation of the 6-coordinate low-spin heme. These structures reveal likely roles for amino acid residues in the distal pocket of the high-spin heme in oxygen binding and activation. Glu113 is implicated in the protonation of heme-bound diatomic oxygen intermediates in promoting cleavage of the O-O bond. Pro107 is shown to change conformation on the binding of each ligand and may play a steric role in oxygen activation by positioning the distal oxygen near Glu113. Gln103 is in a position to provide a hydrogen bond to the Fe(IV)═O moiety that may account for the unusual stability of this species in MauG.  相似文献   

16.
Protein tyrosine phosphatases PTP-SL and PTPBR7 are isoforms belonging to cytosolic membrane-associated and to receptor-like PTPs (RPTPs), respectively. They represent a new family of PTPs with a major role in activation and translocation of MAP kinases. Specifically, the complex formation between PTP-SL and ERK2 involves an unusual interaction leading to the phosphorylation of PTP-SL by ERK2 at Thr253 and the inactivating dephosphorylation of ERK2 by PTP-SL. This interaction is strictly dependent upon a kinase interaction motif (KIM) (residues 224-239) situated at the N terminus of the PTP-SL catalytic domain. We report the first crystal structure of the catalytic domain for a member of this family (PTP-SL, residues 254-549, identical with residues 361-656 of PTPBR7), providing an example of an RPTP with single cytoplasmic domain, which is monomeric, having an unhindered catalytic site. In addition to the characteristic PTP-core structure, PTP-SL has an N-terminal helix, possibly orienting the KIM motif upon interaction with the target ERK2. An unusual residue in the catalytically important WPD loop promotes formation of a hydrophobically and electrostatically stabilised clamp. This could induce increased rigidity to the WPD loop and therefore reduced catalytic activity, in agreement with our kinetic measurements. A docking model based on the PTP-SL structure suggests that, in the complex with ERK2, the phosphorylation of PTP-SL should be accomplished first. The subsequent dephosphorylation of ERK2 seems to be possible only if a conformational rearrangement of the two interacting partners takes place.  相似文献   

17.
There is a genetically determined variation in the inducibility of a high-Km cytoplasmic aldehyde dehydrogenase activity in the rat liver by treatment with phenobarbital. In the present experiments this activity increased after phenobarbital administration in the phenobarbital-responsive rats also in the intestinal postmitochondrial supernatant fraction. Phenobarbital-nonresponsive rats did not exhibit such an increase after drug treatment. Intraperitoneal administration of 2,3,7,8,-tetrachlorodibenzo-pdioxin, strongly enchanced the cytoplasmic enzyme activity in the liver of both responsive and nonresponsive rats. This effect was also seen in the serum but not in the intestinal or hte kidney. Intragastric administration of 3-methylcholanthrene, 3,4,-benzpyrene or chrysene induced the activity in liver and intestine but not in serum or kidney. The activity in liver was also induced by long-term feeding with 2-acetamido-fluorene. The activities induced by tetrachlorodibenzodioxin or the carcinogens had similar behaviour in isoelectric focusing in gel slabs and in gel chromatography, suggesting a possible common identity of these induced enzymes. The activity induced by these agents could be clearly differentiated both from the activity induced by phenobarbital and from the normal cytoplasmic activities.  相似文献   

18.
19.
20.
Previous studies have demonstrated that the carboxyl terminus of the gap junction protein Cx43 (Cx43CT) can act as an independent, regulatory domain that modulates intercellular communication in response to appropriate chemical stimuli. Here, we have used NMR, chemical cross-linking, and analytical ultracentrifugation to further characterize the biochemical and biophysical properties of the Connexin43 carboxyl terminal domain (S255-I382). NMR-diffusion experiments at pH 5.8 suggested that the Connexin43 carboxyl terminus (CX43CT) may have a molecular weight greater than that of a monomer. Sedimentation equilibrium and cross-linking data demonstrated a predominantly dimeric state for the Cx43CT at pH 5.8 and 6.5, with limited dimer formation at a more neutral pH. NMR-filtered nuclear Overhauser effect studies confirmed these observations and identified specific areas of parallel orientation within Cx43CT, likely corresponding to dimerization domains. These regions included a portion of the SH3 binding domain, as well as two fragments previously found to organize in alpha-helical structures. Together, these data show that acidification causes Cx43CT dimer formation in vitro. Whether dimer formation is an important structural component of the regulation of Connexin43 channels remains to be determined. Dimerization may alter the affinity of Cx43CT regions for specific molecular partners, thus modifying the regulation of gap junction channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号