首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complex quantitative histochemical investigation of the submandibular salivary glands in female albino rats at different age periods (4-5 month, 12 to 14 month- and 20 to 25 month-old) revealed some structural and functional changes during the oestrus cycle. The animals were grouped according to the age changes of the endocrine system. The salivary glands were sensitive to hormonal balance changes at all age periods but their metabolic interrelations varied. The functional changes in the salivary glands of young rats were accompanied by synchronous changes in the indices of energy, synthesis and transport metabolism. The gradual increase of disintegration of the endocrine system resulted in the uncoupling between the indices of the parenchyma and the microcirculation, as well as between nucleo-cytoplasmic relationships and intracellular transport processes in the salivary glands. That was a condition under which the impairment of cellularly excretory processes occurred (secretory stasis). The intercalated ducts and the striated tubules were especially sensitive to hormonal balance fluctuations which is consistent with the hypothesis of the endocrine nature of their function.  相似文献   

2.
The structure and secretory activity of the accessory salivary gland in two species of Conus were examined using routine and histochemical techniques of light, scanning and transmission electron microscopy. The composite layers of the accessory salivary gland of Conus are a luminal epithelium, fibromuscular layer, submuscular layer, and a capsule. In C. flavidus and C. vexillum, the luminal epithelium is formed by epitheliocytes and cytoplasmic processes extending from the secretory cells, whose perikarya form the submuscular layer. The processes carry secretory cell products (chiefly Golgi-derived glycoprotein) across the fibromuscular layer and terminate between epitheliocytes (at the bases of the secretory canaliculi) or beyond the surface of the epithelial cells. Conus vexillum is distinguished from C. flavidus by its high content of lipofuscin. Epitheliocytes are the only microvillated cells in the accessory salivary gland of Conus. In C. flavidus, epitheliocytes extrude secretory granules, various types of cytoplasmic blebs and clear vesicles by apocrine “pinching off”. Clear vesicles are shed from the tips of microvilli. The luminal epithelial cells of C. vexillum similarly egest clear vesicles, but normally undergo additional holocrine secretion to release lipofuscin. The secretions of epitheliocytes appear to be major products of the accessory salivary gland: consideration of secretory activities by both epitheliocytes and secretory cells will therefore be necessary when directly investigating accessory salivary gland function in Conus.  相似文献   

3.
Myoepithelial cells were present between the basal lamina and the acinar secretory cells of human labial salivary glands. In form and disposition, they resembled myoepithelial cells in the major salivary glands. Many of these cells possessed single cilia on their upper surfaces. Such cilia occasionally extended into invaginations of the overlying secretory cell. The intercalated ducts were variable in occurrence. Their epithelium ranged from columnar to squamous, and showed few signs of secretory activity. Few intralobular ducts possessed basal striations. While mitochondria were abundant in non-striated cells, they were randomly disposed in both basal and apical cytoplasm, and the basal plasmalemma showed only occasional infoldings. The paucity of true striated ducts in labial salivary glands may be responsible for the high concentration of sodium and chloride in unstimulated labial gland salivary secretions.  相似文献   

4.
The acinar salivary glands of cockroaches receive a dual innervation from the subesophageal ganglion and the stomatogastric nervous system. Acinar cells are surrounded by a plexus of dopaminergic and serotonergic varicose fibers. In addition, serotonergic terminals lie deep in the extracellular spaces between acinar cells. Excitation-secretion coupling in cockroach salivary glands is stimulated by both dopamine and serotonin. These monoamines cause increases in the intracellular concentrations of cAMP and Ca(2+). Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, two elementary secretory processes, namely electrolyte/water secretion and protein secretion, are triggered by different aminergic transmitters. Because of its simplicity and experimental accessibility, cockroach salivary glands have been used extensively as a model system to study the cellular actions of biogenic amines and to examine the pharmacological properties of biogenic amine receptors. In this review, we summarize current knowledge concerning the aminergic control of cockroach salivary glands and discuss our efforts to characterize Periplaneta biogenic amine receptors molecularly.  相似文献   

5.
Synthesis and glycosylation of larval salivary gland secretory proteins of Chironomus thummi were analyzed with respect to cell specific differences in the Balbiani ring (BR) pattern and glycoprotein composition of secretion formerly detected by histochemical staining procedures. In the secretion of a special cell type in salivary glands, which is characterized by the appearance of an additional BR, an additional polypeptide with a relative molecular weight (Mr) of 160 kD was found differing in its antigenic properties and tryptic fingerprint pattern from main cell secretion proteins. This so-called ssp-160 component is preferentially synthesized and glycosylated in the special cells. In the same cells, both the synthesis and glycosylation of all other major secretory proteins was found to be diminished or even repressed. In contrast to the conspicuous cell-specific differences at the level of protein synthesis, RNA analyses show the prominent synthesis of 75 S RNA in both main and special cells and gave no clear indication of the synthesis of a smaller RNA fraction as expected from the size of ssp-160 component. — These and further data on synthesis and properties of secretory proteins as well as expression of BR DNA are discussed with regard to the assumption that at least some of the eight major secretory polypeptides are coded for by BR DNA. The BR gene(s) might have originated by manifold duplications and modifications of short repetitive prototype DNA sequences, which are coordinatively expressed.On the occasion of the 60th anniversary of his birth-day we wish to dedicate this paper to Professor Wolfgang Beermann who was the first to detect, by the discovery of cell specific expression of BR 4 of Chironomus pallidivittatus salivary gland chromosomes and the concomitant occurrence of cell specific secretion granules, a causual relationship between the activity of a Balbiani ring and the appearance of a secretion component (Beermann, 1961)addressee for reprint requests  相似文献   

6.
Striated ducts in cats after 24 hours starvation normally contained glycogen, especially in the basal regions. They also contained neutral mucin and tryptophan in apical parts of "light" cells and small irregular "secretory" granules were found in a similar distribution by electron microscopy.--Parasympathetic nerve stimulation caused a loss of glycogen but no apparent change in the apical secretory material, despite a copious secretion.--Sympathetic stimulation caused a loss of glycogen and an extensive depletion of apical secretory material, although the salivary flow was small.--Parasympathetic denervation caused progressive atrophy of striated ducts and oedematous degeneration of some cells occurred. Persisting "light" cells tended to contain few basal infoldings, few mitochondria and little apical secretory material.--Sympathetic denervation caused a loss of apical secretory material between 2-4 days, which may have been due to "degeneration activation". Thereafter little change was evident but some ductal atrophy had occurred by 32 days.--These changes in ductal secretory material correspond more closely than acinar changes to the alterations in glandular and salivary kallikrein resulting from similar experiments by other workers. It therefore seems likely that submandibular salivary kallikrein in the cat is present in the secretory material of striated ducts.  相似文献   

7.
This is the first ultrastructural investigation of salivary glands in the family Cheyletidae. In both sexes of Bakericheyla chanayi, paired acinous salivary glands and tubular coxal glands were shown to be united into the common podocephalic system. The secretory portion of the salivary gland includes medial and lateral lobes composed of the five and two cells, respectively, with clearly distinct ultrastructure. The cytoplasm of the cells is occupied by the secretory granules containing fine fibrous material. The fine structure of both cell types suggest a proteinaceous nature of their secretions. A single central process extending from the apical face of each secretory cell passes through the common acinar cavity to enter the conducting duct. A pair of intercalary cells at the base of the conducting duct links it with the secretory portion of the gland. Extending towards the acinar cavity, protrusions of intercalary cells alternate the apical regions of the secretory cells and form with them highly‐specialized contacts characterized by the apical network of microtubules and microfilaments. Two possible ways of secretion are suggested: 1) exocytosis into the acinar cavity and 2) direct passage via the central processes. The detection of axon profiles in the gland body suggests a neural control for the glandular cell function. In tritonymphs, neither secretion nor large lateral lobe cells were observed up to the pharate stage when the lateral lobe undergoes rapid differentiation. The arrangement of the acinous gland is compared to that of other arthropods. Its composition appears to be close to the class three of insect glands. The involvement of the lateral lobe cells in silk production is discussed. J. Morphol. 276:772–786, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Tick salivary glands are controlled by nerves, dopamine being a neurotransmitter at the neuroeffector junction. Dopamine and cyclic AMP (cAMP) stimulate fluid secretion by isolated salivary glands. Dopamine activates an adenylate cyclase to increase intracellular cAMP within the female salivary glands. Phosphoproteins whose levels of phosphate are affected by cAMP-dependent protein kinase have been identified in subcellular fractions. Protein(s) phosphorylated by cAMP appears to activate protein phosphatase in the salivary glands.Another phosphorylation pathway appears to act through protein kinase C because of an ability of phorbol esters (known activators of protein kinase C) to stimulate the phosphorylation of proteins, and an ability of a peptide factor in tick brain to metabolize salivary-gland phosphoinositides, an event that often precedes activation of protein kinase C. Because cAMP modulates brain-factor-stimulated formation of inositol phosphates (products of phosphoinositide breakdown) an interrelationship between the two pathways seems likely.Evidence of regulatory processes, including protein phosphorylation'dephosphorylation reactions, will provide a basis for helping asses the physiological significance of secretory products and the role of the salivary glands in disease transmission.  相似文献   

9.
10.
The paper deals with the development of the salivary gland system in Melipona quadrifasciata anthidioides, which begins in the prepupal stage. The silk glands degenerate by autolysis at the end of the larval stage. Degeneration is characterized by cytoplasmic vacuolization and pycnosis of the nuclei of the secretory cells. The glandular secretory portion of degenerated silk glands separates from the excretory ducts. The salivary glands develop from the duct of the larval silk glands. The thoracic salivary glands develop from the ducts of the secretory tubules and the head salivary glands from the terminal excretory duct. The mandibular glands appear in the prepupa as invaginations of mandibular segments, and their differentiation to attain the adult configuration occurs during pupation. The hypopharyngeal glands have their origin from evaginations of the ventral anterior portion of the pharynx. A long tubule first appears with walls formed by more than one cellular layer. Then some cells separate from the lumen of the duct, staying attached to it by a cuticular channel in part intracellular. The initial duct constitutes the axial duct, in which the channel of the secretory cells opens. During the development of salivary and mandibular glands, they recapitulate primitive stages of the phylogeny of the bees. During the development of salivary glands system, mitosis accounts for only part of the growth. Most of the growth occurs by increase in size of cells rather than by cell division. In brown-eyed and pigmented pupae six days before emergence, the salivary gland system is completely developed, although not yet functioning.  相似文献   

11.
(Fkh) is required to block salivary gland apoptosis, internalize salivary gland precursors, prevent expression of duct genes in secretory cells and maintain expression of CrebA, which is required for elevated secretory function. Here, we characterize two new Fkh-dependent genes: PH4alphaSG1 and PH4alphaSG2. We show through in vitro DNA-binding studies and in vivo expression assays that Fkh cooperates with the salivary gland-specific bHLH protein Sage to directly regulate expression of PH4alphaSG2, as well as sage itself, and to indirectly regulate expression of PH4alphaSG1. PH4alphaSG1 and PH4alphaSG2 encode alpha-subunits of resident ER enzymes that hydroxylate prolines in collagen and other secreted proteins. We demonstrate that salivary gland secretions are altered in embryos missing function of PH4alphaSG1 and PH4alphaSG2; secretory content is reduced and shows increased electron density by TEM. Interestingly, the altered secretory content results in regions of tube dilation and constriction, with intermittent tube closure. The regulation studies and phenotypic characterization of PH4alphaSG1 and PH4alphaSG2 link Fkh, which initiates tube formation, to the maintenance of an open and uniformly sized secretory tube.  相似文献   

12.
Summary The thoracic salivary gland of the worker honeybee was investigated by dissection, light microscopy, scanning electron microscopy, and transmission electron microscopy. The glands are paired and each lateral half consists of two parts, a smaller external and a larger internal lobe. The lobes are composed of densely packed secretory tubes and ducts, the tubes of which often show ramifications. A reservoir is packed within the anterior medial part of the gland. The secretory tubes are composed of two types of cells, secretory cells, which are most frequent, and parietal cells. Secretory cells are characterized by a basal labyrinth, abundant rough endoplasmic reticulum, dark secretory vesicles, light vesicles of different sizes, and apical microvilli. Parietal cells are smaller and have a characteristically lobed nucleus and no secretory vesicles. Between the cells there are intercellular canaliculi. In the center of each tube there is an extracellular space with a central cuticular channel. The abundance of rough endoplasmic reticulum and the rare occurrence of smooth endoplasmic reticulum implies a saliva with proteins but rarely with pheromones. Between the secretory tubes there are frequently neuronal profiles which are partly in contact with the secretory cells. Thus a nervous control of this gland is, in contrast to previous investigations, clearly demonstrated. The axonal endings contain dark neurosecretory vesicles as well as light synaptic vesicles. Large parts of the glands are surrounded by a thin tissue sheath which has a smooth surface towards the secretory tubes and shows irregular protrusions towards the outer side. This sheath is considered to be a tracheal air sac, and due to its large extension is probably of importance for the hemolymph flow in the thorax.  相似文献   

13.
The paired salivary glands of female ixodid ticks are essentialorgans of osmoregulation. As the female feeds, the rate of salivaryfluid secretion increases greatly enabling the tick to concentrateits bloodmeal by returning excess water and ions to the hostvia the salivary ducts. The glands are controlled by nervesand the neurotransmitter at the neuroeffector junction is dopamine.Cyclic AMP is a "second messenger" of the fluid secretory process.Specific endogenous salivary gland proteins are phosphorylatedby cyclic AMP-dependent protein kinases which facilitate insome way the fluid secretory process. Fluid secretory capabilityand dopamine sensitive adenylate cyclase activity in glandsof feeding females are dependent on weight of the feeding tickfrom which they are obtained. Conversely, cyclic AMP-dependentphosphodiesterase is inversely related to the magnitude of fluidsecretory capability of the glands. Deletion of calcium or additionof verapamil to the bathing medium during experiments with isolatedglands inhibits dopamine-stimulated fluid secretion. The preciserole(s) of calcium in secretion is(are) unknown but it may helpregulate cyclic AMP by regulating activator and inhibitor proteinsof cyclic AMP phosphodiesterase. The inhibitor modulators areat much higher concentrations in salivary glands of ticks inthe rapid phase of feeding.  相似文献   

14.
The occurrence of intermediate-sized filaments containing prekeratin-like proteins ('cytokeratins') has been examined in various organs of rat and cow by electron microscopy and by immunofluorescence microscopy on frozen sections using antibodies to defined constitutive proteins of various types of intermediate-sized filaments (prekeratin, vimentin, desmin). Positive cytokeratin reaction and tonofilament-like structures have been observed in the following epithelia: epidermis; ductal, secretory, and myoepithelial cells of sweat glands; mammary gland duct; myoepithelial cells of lactating mammary gland; milk secreting cells of cow; ductal, secretory, and myoepithelial cells of various salivary glands; tongue mucosa; bile duct; excretory duct of pancreas; intestinal mucosa; urothelium; trachea; bronchi; thymus reticulum, including Hassall corpuscles; mesothelium; uterus; and ciliated cells of oviduct. None of the epithelial cells mentioned has shown significant reaction with antibodies to vimentin, the major component of the type of intermediate-sized filaments predominant in mesenchymal cells. The widespread, if not general occurrence of cytokeratin filaments in epithelial cells is emphasized, and it is proposed to use this specific structure as a criterion for true epithelial character or origin.  相似文献   

15.
Histochemical localization of acetylcholinesterase and butyrylcholinesterase in the salivary glands has unfolded the significant fact that salivary glands are of two types, one being enzymatically negative and the other showing positive activity. Activity of these enzymes has been linked with the operation of glandular dynamics, particularly concerning the synthetic and secretory processes. The enzymes have been seen localized in the core of jaw. Contrary to it they are absent in the papillary and interpapillary zones of the jaw. Absence of esterases in the papillary and interpapillary ductules has been correlated with its possible non-involvement in the synthesis of vasodilating and anticoagulating materials. The experiments on effect of biting on host tissue give a faint indication of vascular dilation due to bite. Likewise, experiments on enzymatic state of a salivary gland after leech-bite reveal that the diminution of the reactive coverage area in the salivary glands reaches its maximum in the case of ATPase, indicating thereby its more involvement in salivary functions than those of esterases and acid phosphatase.  相似文献   

16.
17.
Calnexin (Cnx) has been characterized as a membrane-bound protein that transiently interacts in a unique chaperone system with newly synthesized glycoproteins in order to allow the establishment of their proper tertiary and, in most cases, quarternary structures. The aim of the study was to identify and to locate the expression of Cnx in the three major salivary glands of humans by different methods. Strong expression of Cnx protein and mRNA were generally found in serous salivary secretory units. With regard to mucous secretory units, expression of Cnx was only detectable at a low level in mucous acinar cells of sublingual glands, but not of submandibular glands. Expression of Cnx was always preserved in the surface epithelium of intralobar and interlobular duct segments. In addition, expression of Cnx was detected in sebaceous glands of parotid tissues, with a distribution pattern resembling that seen in sebaceous glands of the normal skin. In conclusion, production of saliva is associated with the expression of Cnx. Synthesis of molecules in mucous secretory units is not necessarily associated with a strong Cnx expression, whereas synthesis in serous secretory units apparently is. The tissue-specific Cnx expression is also paralleled by the observation that the secretions produced by the major salivary glands differ in their composition and amount.  相似文献   

18.
Ma  Na  Zhang  Yu-Xin  Yue  Chao 《Protoplasma》2021,258(1):59-69

The salivary glands of Panorpidae usually exhibit distinct sexual dimorphism and are closely related to the nuptial feeding behavior. In this study, the salivary glands of Neopanorpa longiprocessa were investigated using light microscopy and transmission electron microscopy. The salivary glands are tubular labial glands and consist of a scoop-shaped salivary pump, a common salivary duct, and a pair of salivary tubes. The male and female salivary glands are remarkably different in the bifurcation position of the common salivary duct and the length and shape of the secretory tubes. Compared with the simple female salivary glands, the male’s are more developed as their paired elongated salivary tubes can be divided into two parts, the glabrate anterior tube and the posterior tube with many secretory tubules. The ultrastructural study shows that the male salivary tubes have strong secretory function. The existence of different secretion granules indicates that there are some chemical reactions or mixing occurring in the lumen. Based on the ultrastructural characteristics, the functions of the different regions of the salivary tube have been speculated. The relationship between the salivary glands and nuptial feeding behavior of N. longiprocessa has been briefly discussed based on the structure of the salivary glands.

  相似文献   

19.
Basic fibroblast growth factor in rat salivary glands   总被引:5,自引:0,他引:5  
We studied the occurrence and localization of basic fibroblast growth factor (bFGF) in rat salivary glands using a specific monoclonal antibody. It was shown that the extract of rat salivary glands has a pronounced stimulatory activity on the growth of bovine capillary endothelial cells, which is blocked by the addition of an antibody against bFGF. The concentration of bFGF in the submandibular/sublingual gland, as determined by radioimmunoassay, was 80% that in the brain. Immunocytochemistry revealed bFGF-immunoreactivity localized primarily in the epithelial cells lining the striated ducts and excretory ducts of the parotid, sublingual and submandibular glands. In addition, intense bFGF-immunoreactivity was observed in the granular convoluted tubule of the submandibular gland, localized predominantly in the agranular pillar cells, which lay in small numbers among the majority of weakly immunostained cells containing many apical secretory granules. At the electron-microscopic level, the immunoreactive material was distributed diffusely in the cytoplasmic matrix and nuclei of all immunoreactive cells, whereas it was absent from all cytoplasmic organelles including the secretory granules. These results indicate that bFGF is localized in different cellular and subcellular compartments from those of other growth factors in the duct system of rat salivary glands.  相似文献   

20.
Xylose-linked proteoglycans, particularly chondroitin sulfate proteoglycan, have been shown to play a significant role in the regulation of salivary gland morphogenesis. The purpose of this study was to determine if xylose-linked proteoglycans are involved in the regulation of differentiation of salivary gland secretory cells. Embryonic rat submandibular salivary gland rudiments were cultured for 120 hr in the presence or absence of 0.75 to 1.0 mM p-nitrophenyl-beta-D-xylopyranoside (beta-D-xyloside), an inhibitor of xylose-linked proteoglycan assembly. beta-D-Xyloside has been shown to block submandibular gland morphogenesis (Thompson and Spooner, 1982). In the present study glandular morphogenesis was blocked in 93.3% of the rudiments cultured in the presence of beta-D-xyloside. However, secretory cell differentiation was observed in 71.4% of those rudiments in which morphogenesis had been inhibited. Biochemical evaluation confirmed that xylose-linked proteoglycan assembly had been inhibited by xyloside. These results indicate that while xylose-linked proteoglycans play a significant role in the control of salivary gland morphogenesis these molecules are not primary regulators for secretory cell differentiation within developing salivary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号