首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of light on mitochondrial respiration has been investigated in Chlamydomonas reinhardtii rcl-u-1-10-6C, a mutant devoid of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity. No CO2 uptake was observed in the light, confirming that there was no Rubisco activity, but the CO2 evolution rate was diminished by 65 to 80%. This inhibition was ascribable to a decrease in the tricarboxylic acid cycle (Krebs cycle) activity. At the same time, O2 evolution associated with stimulation of the O2 uptake appears. Darkness or addition of DCMU fully reversed the effect of light, indicating that the inhibitory process is linked to photosystem activities. Levels of pyridine nucleotides (NAD(H) and NADP(H)) and adenine nucleotides (ATP and ADP), the most probable mediators of the interaction between photosynthesis and respiration, were measured in dark and in light. During a dark to light transition the level of NADPH increased significantly whereas the NAD(H) pool remained almost fully oxidized. The level of ADP was always extremely low. These results suggest that the inhibition of Krebs cycle activity is due to a competition for cytosolic ADP between chloroplastic photophosphorylations and oxidative phosphorylations.  相似文献   

2.
Mutants in which conserved cysteines 294, 297 or 64 and 65 of the Azotobacter vinelandii hydrogenase small subunit were replaced by serines were studied. Cysteines 294 and 297 are homologous to cysteines 246 and 249 of the Desulfovibrio gigas hydrogenase, and these cysteines are ligands to the [3Fe-4S] clusters (A. Volbeda, M.-H. Charon, C. Piras, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps, Nature (London) 373:580-587, 1995). Cysteine 65 is homologous to cysteine 20 of the D. gigas hydrogenase, and this cysteine is a ligand to the proximal [4Fe-4S] cluster. All three mutants retained some hydrogenase activity. All three mutants studied had H2 oxidation-to-H2 evolution activity ratios with whole cells of approximately 1.5, compared with 46 for the wild type. The changes preferentially deplete H2 oxidation activity, while having less effect on evolution. The K64,65C-->S hydrogenase was partially purified and had a specific activity for the evolution reaction that was 22% that of the wild type, while the oxidation-specific activity was 2% that of the wild type. Because cysteine 65 provides a ligand to the proximal [4Fe-4S] cluster, this cluster can be altered without entirely eliminating enzyme activity. Likewise, the detection of H2 evolution and H2 oxidation activities with whole cells and membranes of the K294C-->S and K297C-->S mutants indicates that the [3Fe-4S] cluster can also be altered or possibly eliminated without entirely eliminating enzyme activity. Membranes with K294C-->S or K297C-->S hydrogenase were uninhibited by O2 in H2 oxidation and uninhibited by H2 in H2 evolution. Wild-type membranes and membranes with K64,65C-->S hydrogenase were both sensitive to these inhibitors. These data indicate that the [3Fe-4S] cluster controls the reversible inhibition of hydrogenase activity by O2 or H2.  相似文献   

3.
It has been claimed that the sole H(2)O(2)-scavenging system in the cyanobacterium Synechococcus sp. PCC 7942 is a cytosolic catalase-peroxidase. We have measured in vivo activity of a light-dependent peroxidase in Synechococcus sp. PCC 7942 and UTEX 625. The addition of small amounts of H(2)O(2) (2.5 microM) to illuminated cells caused photochemical quenching (qP) of chlorophyll fluorescence that was relieved as the H(2)O(2) was consumed. The qP was maximal at about 50 microM H(2)O(2) with a Michaelis constant of about 7 microM. The H(2)O(2)-dependent qP strongly indicates that photoreduction can be involved in H(2)O(2) decomposition. Catalase-peroxidase activity was found to be almost completely inhibited by 10 microM NH(2)OH with no inhibition of the H(2)O(2)-dependent qP, which actually increased, presumably due to the light-dependent reaction now being the only route for H(2)O(2)-decomposition. When (18)O-labeled H(2)O(2) was presented to cells in the light there was an evolution of (16)O(2), indicative of H(2)(16)O oxidation by PS 2 and formation of photoreductant. In the dark (18)O(2) was evolved from added H(2)(18)O(2) as expected for decomposition by the catalase-peroxidase. This evolution was completely blocked by NH(2)OH, whereas the light-dependent evolution of (16)O(2) during H(2)(18)O(2) decomposition was unaffected.  相似文献   

4.
The evolution of H(2) in the dark period of a light/dark cycle by a green alga, Chlamydomonas reinhardtii, was studied with the aim of developing a two/stage biophotolysis system. The algal cells accumulated starch during the growth period in light. When these cells were incubated microaerobically in the dark, hydrogenase activity was induced was induced without an appreciable lag time and therapy H(2) evolution was observed for several hours to more than 10 h, depending upon the amount of added O(2). The cells harvested in the midlogarithmic growth phase were the most efficient in production of H(2) in the dark. H(2) evolution was highly dependent on temperature, but rather incentive to pH values from 5-9. Based on these observations, altering production of O(2) and H(2) was demonstrated repeatedly in a light/dark cycle.  相似文献   

5.
A method was devised that allows measurement in vivo of hydrogenase-catalysed H2 evolution from the cyanobacterium Anabaena cylindrica, independent of nitrogenase activity, which is also present. Addition of low concentrations of reduced Methyl Viologen (1-10mM) to intact heterocystous filaments of the organism resulted in H2 evolution, but produced conditions giving total inhibition of nitrogenase (acetylene-reducing and H2-evolving) activity. That the H2 formed under these conditions was not contributed to by nitrogenase was also supported by the observation that its rate of formation was similar in the dark or with Ar replaced by N2 in the gas phase, and also in view of the pattern of H2 evolution at very low Methyl Viologen concentrations. Conclusive evidence that the H2 formed in the presence of Methyl Viologen was solely hydrogenase-mediated was its evolution even from nitrogenase-free (non-heterocystous) cultures; by contrast 'uptake' hydrogenase activity in such cultures was greatly decreased. The hydrogenase activity was inhibited by CO and little affected by acetylene. Finally the hydrogenase activity was shown to be relatively constant at different stages during the batch growth of the organism, as opposed to nitrogenase activity, which varied.  相似文献   

6.
Although infected cell O2 concentration (Oi) is known to limit respiration and nitrogenase activity in legume nodules, techniques have not been available to measure both processes simultaneously in an individual legume nodule. Consequently, details of the relationship between nitrogenase activity and Oi are not fully appreciated. For the present study, a probe was designed that allowed open circuit measurements of H2 evolution (nitrogenase activity) and CO2 evolution (respiration rate) in a single attached soybean nodule while simultaneously monitoring fractional oxygenation of leghemoglobin (and thereby Oi) with a nodule oximeter. Compared to measurements of whole nodulated roots, use of the probe led to inhibition of nitrogenase activity in the single nodules. During oximetry measurements, total nitrogenase activity (TNA; peak H2 evolution in Ar/O2) in the single nodules was 16% of that in whole nodulated roots and 48% of nodulated root activity when Oi was not being measured simultaneously. This inhibition did not affect the nodules' ability to regulate Oi, because exposure to Ar/O2 (80:20, v/v) caused nitrogenase activity and respiration rate to decline, and this decline was linearly correlated with a concurrent decrease in Oi. When the nodules were subsequently exposed to a linear increase in external pO2 from 20 to 100% O2 at 2.7% O2/min, fractional leghemoglobin oxygenation first increased gradually and then more rapidly, reaching saturation at a pO2 between 76 and 100% O2. Plots of nitrogenase activity and respiration rate against Oi showed that rates increased with Oi up to a value of 57 nM, with half-maximal rates being attained at Oi values between 10 and 14 nM O2. The maximum nitrogenase activity achieved during the increase in pO2 (potential nitrogenase activity) was 30 to 57% of that measured in intact nodulated roots, showing that O2 limitation of nitrogenase activity could account for a significant proportion of the inhibition of TNA associated with the use of the probe. However, some factor(s) in addition to O2 must have limited the activity of single nodules at both subsaturating and saturating Oi. At Oi values greater than about 57 nM, nitrogenase activity and nodule respiration were inhibited, but, because this inhibition has been shown previously to be readily reversible when the Oi was lowered, it was not attributed to direct O2 inactivation of the nitrogenase protein. These results indicate that maximum nitrogenase activity in legume nodules is supported by a narrow range of Oi values. Possible biochemical mechanisms are discussed for both O2 limitation of nitrogenase activity at low Oi and inhibition of nitrogenase activity at high Oi.  相似文献   

7.
Periodic evolution of H(2)S during aerobic chemostat culture of Saccharomyces cerevisiae resulted in ultradian metabolic oscillation via periodic inhibition of respiratory activity. To understand the nature of periodic H(2)S evolution, we investigated whether oxidative stress is associated with H(2)S production. The cellular oxidative states represented by intracellular level of lipid peroxides oscillated out of phase with the oscillation of dissolved O(2). Pulse addition of antioxidant, oxidative agent or inhibitor of antioxidation enzymes perturbed metabolic oscillation producing changes in H(2)S evolution. Analysis of H(2)S production profiles during perturbation of oscillation revealed that the amount of H(2)S production is closely linked with cellular oxidative states. Based on these results and our previous reports, we suggest that oxidative stresses result in periodic depletion of glutathione and cysteine, which in turn causes stimulation of the sulfate assimilation pathway and H(2)S production.  相似文献   

8.
In the filamentous cyanobacterium Oscillatoria chalybea photolysis of water does not take place in the complete absence of oxygen. A catalytic oxygen partial pressure of 15x10(-6) Torr has to be present for effective water splitting to occur. By means of mass spectrometry we measured the photosynthetic oxygen evolution in the presence of H(2)(18)O in dependence on the oxygen partial pressure of the atmosphere and analysed the liberations of (16)O(2), (16)O(18)O and (18)O(2) simultaneously. The observed dependences of the light-induced oxygen evolution on bound oxygen yield sigmoidal curves. Hill coefficient values of 3.0, 3.1 and 3.2, respectively, suggest that the binding is cooperative and that four molecules of oxygen have to be bound per chain to the oxygen evolving complex. Oxygen seems to prime the water-splitting reaction by redox steering of the S-state system, putting it in the dark into the condition from which water splitting can start. It appears that in O. chalybea an interaction of oxygen with S(0) and S(1) leads to S(2) and S(3), thus yielding the typical oxygen evolution pattern in which even after extensive dark adaptation substantial amounts of Y(1) and Y(2) are found. The interacting oxygen is apparently reduced to hydrogen peroxide. Mass spectrometry permits to distinguish this highly specific oxygen requirement from the interaction of bulk atmospheric oxygen with the oxygen evolving complex of the cyanobacterium. This interaction leads to the formation H(2)O(2) which is decomposed under O(2) evolution in the light. The dependence on oxygen-partial pressure and temperature is analysed. Structural peculiarities of the cyanobacterial reaction centre of photosystem II referring to the extrinsic peptides might play a role.  相似文献   

9.
The dark reaction of tris(hydroxymethyl)aminomethane (Tris) with the O2-evolving center of photosystem II (PSII) in the S1 state causes irreversible inhibition of O2 evolution. Similar inhibition is observed for several other amines: NH3, CH3NH2, (CH3)2NH, ethanolamine, and 2-amino-2-ethyl-1,3-propanediol. In PSII membranes, both depleted of the 17- and 23-kDa polypeptides and undepleted, the rate of reaction of Tris depends inversely upon the Cl- concentration. However, the rate of reaction of Tris is about 2-fold greater with PSII membranes depleted of the 17- and 23-kDa polypeptides than with undepleted PSII membranes. We have used low-temperature electron paramagnetic resonance (EPR) spectroscopy to study the effect of Tris on the oxidation state of the Mn complex in the O2-evolving center, to monitor the electron-donation reactions in Tris-treated samples, and to observe any loss of the Mn complex (forming Mn2+ ions) after Tris treatment. We find that Tris treatment causes loss of electron-donation ability from the Mn complex at the same rate as inhibition of O2 evolution and that Mn2+ ions are released. We conclude that Tris reduces the Mn complex to labile Mn2+ ions, without generating any kinetically stable, partially reduced intermediates, and that the reaction occurs at the Cl(-)-sensitive site previously characterized in studies of the reversible inhibition of O2 evolution by amines.  相似文献   

10.
Zhang L  Happe T  Melis A 《Planta》2002,214(4):552-561
Sulfur deprivation in green algae causes reversible inhibition of photosynthetic activity. In the absence of S, rates of photosynthetic O2 evolution drop below those of O2 consumption by respiration. As a consequence, sealed cultures of the green alga Chlamydomonas reinhardtii become anaerobic in the light, induce the "Fe-hydrogenase" pathway of electron transport and photosynthetically produce H2 gas. In the course of such H2-gas production cells consume substantial amounts of internal starch and protein. Such catabolic reactions may sustain, directly or in directly, the H2-production process. Profile analysis of selected photosynthetic proteins showed a precipitous decline in the amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) as a function of time in S deprivation, a more gradual decline in the level of photosystem (PS) II and PSI proteins, and a change in the composition of the PSII light-harvesting complex (LHC-II). An increase in the level of the enzyme Fe-hydrogenase was noted during the initial stages of S deprivation (0-72 h) followed by a decline in the level of this enzyme during longer (t >72 h) S-deprivation times. Microscopic observations showed distinct morphological changes in C. reinhardtii during S deprivation and H2 production. Ellipsoid-shaped cells (normal photosynthesis) gave way to larger and spherical cell shapes in the initial stages of S deprivation and H2 production, followed by cell mass reductions after longer S-deprivation and H2-production times. It is suggested that, under S-deprivation conditions, electrons derived from a residual PSII H2O-oxidation activity feed into the hydrogenase pathway, thereby contributing to the H2-production process in Chlamydomonas reinhardtii. Interplay between oxygenic photosynthesis, mitochondrial respiration, catabolism of endogenous substrate, and electron transport via the hydrogenase pathway is essential for this light-mediated H2-production process.  相似文献   

11.
1. The pH optimum of CO2-dependent O2 evolution by barley (Hordeum vulgare L.) chloroplasts was found to be between 7.8 and 8.2. The addition of 1 mM MgCl2 in the dark inhibited O2 evolution over the entire pH range tested and resulted in a much sharper pH profile centered around pH 8.2. 2. The pH optimum for O2 evolution, in the presence and absence of 1 mM MgCl2, was acid-shifted 0.3--0.4 pH units by 2 mM NH4Cl. The pH optimum of O2 evolution, with and without 1 mM MgCl2, was base-shifted by 2 mM sodium acetate, approx. 0.5 pH units relative to the controls. 3. O2 evolution in the presence of bicarbonate plus 3-phosphoglycerate or ribose-5-phosphate was considerably less sensitive to pH than CO2-dependent O2 evolution in the absence of substrate. With these substrates, both in the presence and absence of 1 mM MgCl2, the pH optimum was broad and was centered around pH 7.8. 4. Inhibition of CO2-dependent O2 evolution by inorganic phosphate and magnesium increased as the pH of the reaction mixture was decreased below the optimum. Decreasing the pH from 8.2 to 7.6, reduced over 3-fold the concentration of inorganic phosphate required to inhibit O2 evolution completely. For magnesium, a similar change in pH reduced the concentration required to inhibit O2 evolution 50% approx. 5-fold. At pH 8.2, magnesium inhibition required inorganic phosphate. Magnesium was not required for inhibition of O2 evolution by inorganic phosphate, but incresaed the relative inhibition observed. 5. Illumination of intact barley chloroplasts increased the activity of NADP-glyceraldehyde-3-P dehydrogenase, phosphoribulokinase and fructose-1,6-diphosphatase. MgCl2 and inorganic phosphate prevented this increase in enzyme activity at concentrations that completely inhibited CO2-dependent O2 evolution. 6. The results obtained suggest that magnesium inhibition of O2 evolution may be caused by enhanced phosphate exchange across the chloroplast envelope.  相似文献   

12.
Hydrogen peroxide inhibits photosynthetic O2 evolution. It has been shown that H2O2 destroys the function of the oxygen-evolving complex (OEC) in some chloroplast and Photosystem (PS) II preparations causing release of manganese from the OEC. In other preparations, H2O2 did not cause or caused only insignificant release of manganese. In this work, we tested the effect of H2O2 on the photosynthetic electron transfer and the state of OEC manganese in a native system (intact cells of the cyanobacterium Anabaena variabilis). According to EPR spectroscopy data, H2O2 caused an increase in the level of photooxidation of P700, the reaction centers of PS I, and decreased the rate of their subsequent reduction in the dark by a factor larger than four. Combined effect of H2O2, CN-, and EDTA caused more than eight- to ninefold suppression of the dark reduction of P700+. EPR spectroscopy revealed that the content of free (or loosely bound) Mn2+ in washed cyanobacterial cells was ~20% of the total manganese pool. This content remained unchanged upon the addition of CN- and increased to 25-30% after addition of H2O2. The content of the total manganese decreased to 35% after the treatment of the cells with EDTA. The level of the H2O2-induced release of manganese increased after the treatment of the cells with EDTA. Incubation of cells with H2O2 for 2 h had no effect on the absorption spectra of the photosynthetic pigments. More prolonged incubation with H2O2 (20 h) brought about degradation of phycobilins and chlorophyll a and lysis of cells. Thus, H2O2 causes extraction of manganese from cyanobacterial cells, inhibits the OEC activity and photosynthetic electron transfer, and leads to the destruction of the photosynthetic apparatus. H2O2 is unable to serve as a physiological electron donor in photosynthesis.  相似文献   

13.
Nitrite, a new substrate for nitrogenase   总被引:1,自引:0,他引:1  
We have examined the reactivity of the purified component proteins of Azotobacter vinelandii nitrogenase (Av1 and Av2) toward nitrate and nitrite. Nitrate has no effect on H2 evolution or C2H2 reduction by nitrogenase and thus is neither a substrate nor an inhibitor. Nitrite dramatically inhibits H2 evolution. This inhibition has two components, one irreversible and one reversible upon addition of CO. The irreversible inhibition is due to nitrite inactivation of the Fe protein. The rate of this inactivation is greatly enhanced by addition of MgATP, suggesting the [4Fe-4S] cluster is the site of nitrite attack. The reversible inhibition does not represent an inhibition of electron flow but rather a diversion of electrons away from H2 evolution and into the six-electron reduction of nitrite to ammonia. Thus, nitrogenase functions as a nitrite reductase.  相似文献   

14.
大豆萌发过程的活性氧代谢   总被引:16,自引:0,他引:16  
本文研究了大豆萌发过程中活性氧的产生与清除,并探讨了光因子在活性氧代谢中的作用。大豆呼吸强度、O产生速率及H2O2水平都在吸水后第四天达到高峰,然后下降,三者的变化趋势同步。SOD、POD及APX的活性随萌发过程而逐渐增强,最后趋于平稳。SOD同工酶谱中分别于萌发的第二、第三天各出现一条新的酶带。CAT在萌发的初期猛增50倍左右,之后趋于稳定。在三种清除H2O2的酶(CAT、POD、APX)中,CAT清除H2O2的能力远远高于POD与APX,CAT可能是大豆萌发过程中最主要的H2O2清除酶。光萌发时呼吸强度低于暗中萌发,但O产生速率与H2O2水平高于暗萌发,光萌发时O的产生占总耗氧量的1.1—2.7%,而暗中萌发为0.9—1.3%。光条件下SOD、APX活性明显高于暗中萌发,而POD与CAT则在光和暗条件下相差不大。  相似文献   

15.
We previously reported that hydrogen peroxide (H2O2) mediates mitogen activation of ribosomal protein S6 kinase 1 (S6K1) which plays an important role in cell proliferation and growth. In this study, we investigated a possible role of H2O2 as a molecular linker in Rac1 activation of S6K1. Overexpression of recombinant catalase in NIH-3T3 cells led to the drastic inhibition of H2O2 production by PDGF, which was accompanied by a decrease in S6K1 activity. Similarly, PDGF activation of S6K1 was significantly inhibited by transient transfection or stable transfection of the cells with a dominant-negative Rac1 (Rac1N17), while overexpression of constitutively active Rac1 (Rac1V12) in the cells led to an increase in basal activity of S6K1. In addition, stable transfection of Rat2 cells with Rac1N17 dramatically attenuated the H2O2 production by PDGF as compared with that in the control cells. In contrast, Rat2 cells stably transfected with Rac1V12 produced high level of H2O2 in the absence of PDGF, comparable to that in the control cells stimulated with PDGF. More importantly, elimination of H2O2 produced in Rat2 cells overexpressing Rac1V12 inhibited the Rac1V12 activation of S6K1, indicating the possible role of H2O2 as a mediator in the activation of S6K1 by Rac1. However, H2O2 could be also produced via other pathway, which is independent of Rac1 or PI3K, because in Rat2 cells stably transfected with Rac1N17, H2O2 could be produced by arsenite, which has been shown to be a stimulator of H2O2 production. Taken together, these results suggest that H2O2 plays a pivotal role as a mediator in Rac1 activation of S6K1.  相似文献   

16.
A new method for measuring the secretion of H(2)O(2) has been based upon an H(2)O(2)-dependent inhibition of catalase by 3-amino-1,2,4-triazole. The conversion of an H(2)O(2)-secretion rate into a catalase inhibition rate amplified a relatively small molar concentration of H(2)O(2) and provided a highly specific and sensitive method for quantitatively measuring H(2)O(2). A major advantage of this approach is that it does not require extensive accumulation of H(2)O(2) in the environment. The method was successfully employed to measure H(2)O(2) secretion by Mycoplasma pneumoniae, which possesses a peroxidase-like activity that limits the accumulation of H(2)O(2) in the environment.  相似文献   

17.
W F Beck  G W Brudvig 《Biochemistry》1987,26(25):8285-8295
The reaction of hydroxylamine with the O2-evolving center of photosystem II (PSII) in the S1 state delays the advance of the H2O-oxidation cycle by two charge separations. In this paper, we compare and contrast the reactions of hydroxylamine and N-methyl-substituted analogues with the electron-donor side of PSII in both O2-evolving and inactivated [tris(hydroxymethyl)aminomethane- (Tris-) washed] spinach PSII membrane preparations. We have employed low-temperature electron paramagnetic resonance (EPR) spectroscopy in order to follow the oxidation state of the Mn complex in the O2-evolving center and to detect radical oxidation products of hydroxylamine. When the reaction of hydroxylamine with the S1 state in O2-evolving membranes is allowed to proceed to completion, the S2-state multiline EPR signal is suppressed until after three charge separations have occurred. Chemical removal of hydroxylamine from treated PSII membrane samples prior to illumination fails to reverse the effects of the dark reaction, which argues against an equilibrium coordination of hydroxylamine to a site in the O2-evolving center. Instead, the results indicate that the Mn complex is reduced by two electrons by hydroxylamine, forming the S-1 state. An additional two-electron reduction of the Mn complex to a labile "S-3" state probably occurs by a similar mechanism, accounting for the release of Mn(II) ions upon prolonged dark incubation of O2-evolving membranes with high concentrations of hydroxylamine. In N,N-dimethylhydroxylamine-treated, Tris-washed PSII membranes, which lack O2 evolution activity owing to loss of the Mn complex, a large yield of dimethyl nitroxide radical is produced immediately upon illumination at temperatures above 0 degrees C. The dimethyl nitroxide radical is not observed upon illumination under similar conditions in O2-evolving PSII membranes, suggesting that one-electron photooxidations of hydroxylamine do not occur in centers that retain a functional Mn complex. We suggest that the flash-induced N2 evolution observed in hydroxylamine-treated spinach thylakoid membrane preparations arises from recombination of hydroxylamine radicals formed in inactivated O2-evolving centers.  相似文献   

18.
Steady-state H+/O stoichiometry of liver mitochondria.   总被引:2,自引:1,他引:1       下载免费PDF全文
We have measured the H+/O stoichiometry of rat liver mitochondria respiring in a steady-state, using a novel method. This involves measuring the initial rate of H+ back-flow into mitochondria after respiratory inhibition, with the assumption that this is equal to the steady-state H+-ejection rate. Division by the steady-state O2-consumption rate yields the H+/O ratio. The H+/O values obtained were: 8.3 +/- 1.0 (mean +/- S.E.M.) for 3-hydroxybutyrate: 8.2 +/- 0.7 for glutamate plus malate; 6.0 +/- 0.2 for succinate; 4.1 +/- 0.3 for ascorbate/tetramethylphenylenediamine and 3.0 +/- 0.1 for ascorbate/ferrocyanide. These values correspond to H+/O stoichiometries for electron flow to oxygen from NAD+-linked substrates, succinate and cytochrome c of 8, 6 and 2 (charge/O ratio = 4) respectively.  相似文献   

19.
Tsuno M  Suzuki H  Kondo T  Mino H  Noguchi T 《Biochemistry》2011,50(13):2506-2514
Photosynthetic O(2) evolution takes place at the Mn cluster in photosystem II (PSII) by oxidation of water. It has been proposed that ammonia, one of water analogues, functions as an inhibitor of O(2) evolution at alkaline pH. However, the detailed mechanism of inhibition has not been understood yet. In this study, we investigated the mechanism of ammonia inhibition by examining the NH(4)Cl-induced inhibition of O(2) evolution in a wide pH range (pH 5.0-8.0) and by detecting the interaction site using Fourier transform infrared (FTIR) spectroscopy. In addition to intact PSII membranes from spinach, PSII membranes depleted of the PsbP and PsbQ extrinsic proteins were used as samples to avoid the effect of the release of these proteins by salt treatments. In both types of samples, oxygen evolution activity decreased by approximately 40% by addition of 100 mM NH(4)Cl in the range of pH 5.0-8.0. The presence of inhibition at acidic pH without significant pH dependence strongly suggests that NH(4)(+) cation functions as a major inhibitor in the acidic pH region, where neutral NH(3) scarcely exists in the buffer. The NH(4)Cl treatment at pH 6.5 and 5.5 induced prominent changes in the COO(-) stretching regions in FTIR difference spectra upon the S(1) → S(2) transition measured at 283 K. The NH(4)Cl concentration dependence of the amplitude of the spectral changes showed a good correlation with that of the inhibition of O(2) evolution. From this observation, it is proposed that NH(4)(+) cation interacts with carboxylate groups coupled to the Mn cluster as direct ligands or proton transfer mediators, causing inhibition of the O(2) evolving reaction.  相似文献   

20.
During dark adaptation, a change in the O2-evolving complex (OEC) of spinach photosystem II (PSII) occurs that affects both the structure of the Mn site and the chemical properties of the OEC, as determined from low-temperature electron paramagnetic resonance (EPR) spectroscopy and O2 measurements. The S2-state multiline EPR signal, arising from a Mn-containing species in the OEC, exhibits different properties in long-term (4 h at 0 degrees C) and short-term (6 min at 0 degree C) dark-adapted PSII membranes or thylakoids. The optimal temperature for producing this EPR signal in long-term dark-adapted samples is 200 K compared to 170 K for short-term dark-adapted samples. However, in short-term dark-adapted samples, illumination at 170 K produces an EPR signal with a different hyperfine structure and a wider field range than does illumination at 160 K or below. In contrast, the line shape of the S2-state EPR signal produced in long-term dark-adapted samples is independent of the illumination temperature. The EPR-detected change in the Mn site of the OEC that occurs during dark adaptation is correlated with a change in O2 consumption activity of PSII or thylakoid membranes. PSII membranes and thylakoid membranes slowly consume O2 following illumination, but only when a functional OEC and excess reductant are present. We assign this slow consumption of O2 to a catalytic reduction of O2 by the OEC in the dark. The rate of O2 consumption decreases during dark adaptation; long-term dark-adapted PSII or thylakoid membranes do not consume O2 despite the presence of excess reductant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号