首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Summary I argue here that, from the perspective of any individual, most landscapes are composed of only three basic types of habitats. These are: (1) source habitat in which reproduction exceeds mortality and the expected per capita growth rate is greater than one; (2) sink habitat, in which limited, reproduction is possible but will not on average, compensate for mortality and the per capita rate of growth is between zero and one; and (3) unusable habitat, which comprises the matrix of all habitats that are never exploited by the species in question, and in which patches of source and sink habitats are embedded. Unlike earlier source-sink models, this model explicitly considers the effects that substituting one type of habitat for another has on the equilibrium size of a population and the interactions between species which can use both source and sink habitats. The model demonstrates that the equilibrium size of a species' population can sometimes be increased by substituting unusable habitat for sink habitat. Thus, even though the average patch quality in the landscape may be decreased, the overall quality of the landscape can increase. For two species with distinct habitat preferences, interactions between species can vary qualitatively as well as quantitatively as a function of the relative abundances of each of the habitat types. The model also shows that the interactions between species are particularly sensitive to the relative costs of moving between patches and sampling patches to determine their quality. Recent fragmentation of natural landscapes may increase the cost of searching for usable (source or sink) patches. Under some conditions, the interspecific interactions may be substantially more negative (competitive) than the interactions that evolved in the original natural landscape, further reducing population sizes and increasing the likelihood of competitive exclusion in fragmented modern landscapes.  相似文献   

2.
Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast‐growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow‐growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub‐ambient and elevated CO2 concentrations ([CO2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO2] indicating that source strength was near maximal at current [CO2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO2], and lower non‐structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO2].  相似文献   

3.
Blossom-end rot is generally considered a calcium-related physiological disorder. The results of the previous studies show that several factors such as plant conditions can be effective on the blossom-end rot incidence. Therefore, the present study was undertaken to investigate the effect of the sink/source ratio on the incidence of the blossom-end rot of two greenhouse tomato (Solanum lycopersicum L.) cultivars: ‘Grandella’ and ‘Isabella’. To this end, four treatments were applied: saving one fruit per truss (1F), two fruits per truss (2F), three fruits per truss (3F), and no fruit pruning (control). The results showed that the tomato cultivar ‘Isabella’ was more susceptible to the blossom-end rot than ‘Grandella’. Decreasing the sink/source ratio increased the incidence of the blossom-end rot and the relative fruit growth rate. The correlation between the blossom-end rot incidence and the relative fruit growth rate showed that the fruit growth rate could be regarded as an important factor in the incidence of this disorder. Endogenous auxin and cytokinin concentrations acted as the regulators of the fruit growth rate and influenced it. Slowing down the relative growth rate by keeping proper sink/source ratio based on tomato cultivar is, therefore, an effective, cheap and healthy way to control the incidence of the blossom-end rot, especially in organic farming.  相似文献   

4.
A mathematical model of carbon accumulation by growing fruitis presented. The model implicitly incorporates the conceptsof sink activity and sink size but avoids the need to stipulatesink strength. In addition to sink activity and size, carbonaccumulation depends on characteristics such as photosynthesisand respiration of the fruit itself as well as carbon supplyvia the peduncle attachment. Simulations with prescribed limitationsof carbon supply show similar results to field observations.The proposed model coupled with a carbon distribution/supplymodel could simulate the growth of individual fruit within aheterogeneous canopy.Copyright 1999 Annals of Botany Company Fruit growth, model, carbon partitioning, source:sink, relative growth rate.  相似文献   

5.
Compared with late cultivars, early potato cultivars allocatea larger part of the available assimilates to the tubers earlyin the growing season, leading to shorter growing periods andlower yields. A dynamic simulation model, integrating effectivetemperature and source –sink relationships of the crop,was used to analyse this relation, using data from experimentsin the Netherlands carried out over 5 years. Dry matter allocationto the tuber in these field experiments was simulated well whenthe tuber was considered as a dominant sink that affects earlinessof a potato crop in two ways: early allocation of assimilatesto the tubers stops foliage growth early in the season and reducesthe longevity of individual leaves. In a sensitivity analysisthe influence of tuber initiation, leaf longevity and the maximumrelative tuber growth rate (Rtb) on assimilate allocation andcrop earliness was evaluated. It was found that the maximumrelative tuber growth rate can influence crop earliness morethan the other two factors, but when conditions for tuber growthare optimal, the leaf longevity is most important. Solanum tuberosumL.; simulation model; source –sink relationships; cultivars  相似文献   

6.
Theories on allelochemical concentrations in plants are often based upon the relative carbon costs and benefits of multiple metabolic fractions. Tests of these theories often rely on measuring metabolite concentrations, but frequently overlook priorities in carbon partitioning. We conducted a pulse-labeling experiment to follow the partitioning of 14CO2-labeled photosynthate into ten metabolic pools representing growth and maintenance (amino acids, organic acids, lipids plus pigments, protein, residue), defense (phenolic glycosides, methanol:water and acetone-soluble tannins/phenolics), and transport and storage (sugars and starch) in source and importing sink leaves of quaking aspen (Populus tremuloides). The peak period of 14C incorporation into sink leaves occurred at 24 h. Within 48 h of labeling, the specific radioactivity (dpm/mg dry leaf weight) of phenolic glycosides declined by over one-third in source and sink leaves. In addition, the specific radioactivity in the tannin/phenolic fraction decreased by 53% and 28% in source and sink leaves, respectively. On a percent recovery basis, sink leaves partitioned 1.7 times as much labeled photosynthate into phenolic glycosides as source leaves at peak 14C incorporation. In contrast, source leaves partitioned 1.8 times as much 14C-labeled photosynthate into tannins/phenolics as importing sink leaves. At the end of the 7-day chase period, sink leaves retained 18%, 52%, and 30% of imported 14C photosynthate, and labeled source leaves retained 15%, 66%, and 19% of in situ photosynthate in metabolic fractions representing transport and storage, growth and maintenance, and defense, respectively. Analyses of the phenolic fractions showed that total phenolics were twice as great and condensed tannins were 1.7 times greater in sink than in source leaves. The concentration of total phenolics and condensed tannins did not change in source and sink leaves during the 7-day chase period. Received: 31 July 1998 / Accepted: 8 February 1999  相似文献   

7.
The heterotrophic biomass has the capacity of utilizing substrate predominantly for growth or storage processes under steady-state conditions. In this study, the short-term variations in growth and storage kinetics of activated sludge under disturbed feeding conditions were analyzed using a multi-component biodegradation model. The variations in growth and storage kinetics were investigated with the aid of multi-response modeling and identifiability analysis. It was found that the heterotrophic biomass is able to increase its direct growth activity together with reducing the substrate storage capability under the availability of external substrate. Reducing the sludge age (SRT) from 10 to 2?days increased the maximum specific growth rate, μ (OHO,Max) from 3.9 to 7.0 day(-1), but did not considerably affected the maximum storage rate, k (Stor,OHO). The alteration of sludge age also elevated the half-saturation constant for growth (K (S,OHO)) from 5 to 25?mg COD/L. The increase in primary growth metabolism together with reduced storage rate was validated by model for two different sludge ages in the availability of external substrate. Aside from having a lower storage capability, the biomass had fast adaptation ability to direct growth process at low SRTs. The alteration of feed conditions was found to have different impacts on storage and growth kinetics. These results are significant and advance the field of activated sludge modeling under dynamic conditions by incorporation of short-term effects. Appropriate modifications including short-term effects in model structure may also reduce dynamic model recalibration efforts in the future.  相似文献   

8.
Seedlings of barley ( Hordeum vulgare L. cv. Agneta) were grown hydroponically under continuous light, constant temperature and relative humidity. During the first two weeks, the relative growth rate (RGR) was kept at 25% by limiting only the supply of nitrogen. The cultures were then transferred to nitrogen-free media and the amounts of fructan, starch, sucrose, glucose and fructose in sink and source leaves were measured at 0, 12, 24, 48, 72, 120 and 156 h. The activities of two key enzymes in fructan metabolism, sucrose:sucrose fructosyltransferase (SST), fructan exohydrolase (FEH), as well as acid invertase were also measured in the two types of leaves.
The fructan and starch levels in both sink and source leaves increased during nitrogen deficiency. The highest increase in starch was 200% of the control while for fmctans a 700% increase was recorded. The activity of SST increased parallel to fructan accumulation in sink leaves. However the FEH activity was constant and not affected by nitrogen deficiency. The invertase activity both in sink and source leaves was reduced by nitrogen deficiency. More fructans as well as sucrose and fructose accumulated in source leaves compared to sink leaves both before and after nitrogen starvation. The results show that fructan is the major carbohydrate reserve accumulating under nitrogen deficiency both in sink and source leaves in barley plants. The induction of fructan accumulation in sink leaves caused by nitrogen deficiency is intimately connected with the regulation of SST  相似文献   

9.
Habitat sinks can attract dispersing animals if high mortality or breeding failure are difficult to detect (e.g., when due to human hunting or pollution). Using a simple deterministic model, we explore the dynamics of such source-sink systems considering three scenarios: an avoided sink, no habitat preference, and an attractive sink. In the second two scenarios, there is a threshold proportion of sink habitat above which the whole population decreases to extinction, but this extinction threshold varies with habitat preference and the relative qualities of the two habitat types. Hence, it would be necessary to know the habitat preferences of any species in a source-sink system to interpret data on population increases and declines. In the attractive sink scenario, small changes in the proportion of sink habitat may have disproportionate effects on the population persistence. Also, small changes in growth rates at the source and the sink severely affect the threshold and the time of extinction. For some combinations of demographic parameters and proportion of habitat sink, the decline affects the source first; thus, during some time, it will be hidden to population monitoring at the sink, where numbers can even increase. The extinction threshold is also very sensitive to the initial population sizes relative to carrying capacity. Attractive sinks represent a novel aspect of source-sink dynamics with important conservation and management implications.  相似文献   

10.
The future of the land carbon sink is a significant uncertainty in global change projections. Here, key controls on global terrestrial carbon storage are examined using a simple model of vegetation and soil. Equilibrium solutions are derived as a function of atmospheric CO2 and global temperature, these environmental variables are then linked in an idealized global change trajectory, and the lag between the dynamic and equilibrium solutions is derived for different linear rates of increase in atmospheric CO2. Terrestrial carbon storage is departing significantly from equilibrium because CO2 and temperature are increasing on a similar timescale to ecosystem change, and the lag is found to be proportional to the rate of forcing. Thus peak sizes of the land carbon sink, and any future land carbon source, are proportional to the rate of increase of CO2. A switch from a land carbon sink to a source occurs at a higher CO2 and temperature under more rapid forcing. The effects of parameter uncertainty in temperature sensitivities of photosynthesis, plant respiration and soil respiration, and structural uncertainty through the effect of fixing the ratio of plant respiration to photosynthesis are explored. In each case, the CO2 fertilization effect on photosynthesis is constrained to reproduce the 1990 atmospheric CO2 concentration within a closed global model. New literature compilations are presented for the temperature sensitivities of plant and soil respiration. A lower limit, Q10=1.29, for soil respiration significantly increases future land carbon storage. An upper limit, Q10=3.63, for soil respiration underpredicts the increase in carbon storage since the Last Glacial Maximum. Fixing the ratio of plant respiration to photosynthesis (R/P) at 0.5 generates the largest and most persistent land carbon sink, followed by the weakest land carbon source.  相似文献   

11.
Despite 20 years of intensive effort to understand the global carbon cycle, the budget for carbon dioxide in the atmosphere is unbalanced. To explain why atmospheric CO2 is not increasing as rapidly as it should be, various workers have suggested that land vegetation acts as a sink for carbon dioxide. Here, I examine various possibilities and find that the evidence for a sink of sufficient magnitude on land is poor. Moreover, it is unlikely that the land vegetation will act as a sink in the postulated warmer global climates of the future. In response to rapid human population growth, destruction of natural ecosystems in the tropics remains a large net source of CO2 for the atmosphere, which is only partially compensated by the potential for carbon storage in temperate and boreal regions. Direct and inadvertent human effects on land vegetation might increase the magnitude of regional CO2 storage on land, but they are unlikely to play a significant role in moderating the potential rate of greenhouse warming in the future.  相似文献   

12.
I investigate two aspects of source-sink theory that have hitherto received little attention: density-dependent dispersal and the cost of dispersal to sources. The cost arises because emigration reduces the per capita growth rate of sources, thus predisposing them to extinction. I show that source-sink persistence depends critically on the interplay between these two factors. When the emigration rate increases with abundance at an accelerating rate, dispersal costs to sources is the lowest and risk of source-sink extinction the least. When the emigration rate increases with abundance at a decelerating rate, dispersal costs to sources is the highest and the risk of source-sink extinction the greatest. Density-independent emigration has an intermediate effect. Thus, density-dependent dispersal per se does not increase or decrease source-sink persistence relative to density-independent dispersal. The exact mode of dispersal is crucial. A key point to appreciate is that these effects of dispersal on source-sink extinction arise from the temporal density-dependence that dispersal induces in the per capita growth rates of source and sink populations. Temporal density-dependence due to dispersal is beneficial at low abundances because it rescues sinks from extinction, and detrimental at high abundances because it drives otherwise viable sources to extinction. These results are robust to the nature of population dynamics in the sink, whether exponential or logistic. They provide a means of assessing the relative costs and benefits of preserving sink habitats given three biological parameters.  相似文献   

13.
张逸如  刘晓彤  高文强  李海奎 《生态学报》2021,41(13):5093-5105
分析近20年来天保工程区森林植被碳储量的动态变化及碳汇(源)特征,以期为我国天然林保护的政策制订和措施实施提供数据支撑。利用天然林资源保护工程区6-9次森林资源连续清查数据,把森林植被划分乔木林、灌木林、竹林、疏林地、散生木、四旁树,基于行业标准的生物量模型和碳计量参数、采用生物量加权平均法等方法,估算整个工程区和各省的森林植被总碳储量;对乔木林分起源、龄组、优势树种(组)估算碳储量和碳密度;量化森林植被总碳储量和乔木林碳储量随时间变化的消长,明确其碳汇/源特征。研究结果表明:6-9次清查,天保工程区森林植被总碳储量分别为2999 TgC、3254 TgC、3585 TgC和4097 TgC,年均增长率为1.65%、1.96%和2.70%;碳储量集中分布于我国东北和西南区域,其中四川碳储量最高,4期碳储量均占天保工程区总量20%以上;乔木林碳储量是森林植被碳储量的主体,每期占比均稳定在80%以上,其中天然林比例由94.67%下降至90.28%,人工林比例稳步上升,但到9次清查时其碳密度仍低于天然林50%;不同龄组间,中龄林碳储量最高,近熟林碳储量增长最快,碳密度从幼龄林到过熟林逐渐上升,4期趋势一致;乔木林中纯林碳储量占60%以上,大部分树种(组)碳储量和碳密度随时间推移而增加。7-9次清查,天保工程区森林植被总固碳量(当期相对于前期)分别为255.33 TgC、331.46 TgC和511.53 TgC,对全国森林植被总碳汇量的贡献由8次连清的53.78%上升到9次的67.46%,其中,乔木林对全国乔木林碳汇的贡献为68.71%;天保工程区内天然林对乔木林碳汇的贡献为75.90%;不同清查期,乔木林各龄组的碳汇变化较大,幼龄林和中龄林碳汇占比明显上升,近熟林和过熟林下降,9次清查时各龄组碳汇量大小顺序为:中龄林 > 近熟林 > 幼龄林 > 成熟林 > 过熟林;不同清查期,各个优势树种的碳汇/源表现不一,总体上,混交林的碳汇比例最大,到9次清查时,阔叶混交林和针阔混交林对乔木林碳汇的贡献分别为62.59%和17.23%,纯林中柏木碳汇贡献最大,为5.43%。天保工程区森林植被总碳储量随时间稳步增长,乔木林是总碳储量的主体,天然林是碳汇的主要来源,天然林保护增强了我国天然林碳汇的碳汇功能,促进了人工林碳汇作用提升,未来天保工程区碳汇潜力很大。  相似文献   

14.

Background and Aims

Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina.

Methods

One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling.

Key Results

Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the duration of grain filling.

Conclusions

Source–sink modelling holds the promise of accounting for plant–pathogen interactions over time under fluctuating climatic/lighting conditions in a robust way.  相似文献   

15.
A method for detailed investigation of aerobic carbon degradation processes by microorganisms is presented. The method relies on an integrated use of the respirometric, titrimetric, and off-gas CO(2) measurements. The oxygen uptake rate (OUR), hydrogen ion production rate (HPR), and the carbon dioxide transfer rate (CTR) resulting from the biological as well as physicochemical processes, coupled with a metabolic model characterizing both the growth and carbon storage processes, enables the comprehensive study of the carbon degradation processes. The method allows the formation of carbon storage products and the biomass growth rates to be estimated without requiring any off-line biomass or liquid-phase measurements, although the practical identifiability of the system could be improved with additional measurements. Furthermore, the combined yield for biomass growth and carbon storage is identifiable, along with the affinity constant with respect to the carbon substrate. However, the individual yields for growth and carbon storage are not identifiable without further knowledge about the metabolic pathways employed by the microorganisms in the carbon conversion. This is true even when more process variables are measured. The method is applied to the aerobic carbon substrate degradation by a full-scale sludge using acetate as an example carbon source. The sludge was able to quickly take up the substrate and store it as poly-beta-hydroxybutyrate (PHB). The PHB formation rate was a few times faster than the biomass growth rate, which was confirmed by off-line liquid- and solid-phase analysis. The estimated combined yield for biomass growth and carbon storage compared closely to that determined from the theoretical yields reported in literature based on thermodynamics. This suggests that the theoretical yields may be used as default parameters for modeling purposes.  相似文献   

16.
Salinity is one of the major environmental factors affecting plant growth and survival by modifying source and sink relationships at physiological and metabolic levels. Individual metabolite levels and/or ratios in sink and source tissues may reflect the complex interplay of metabolic activities in sink and source tissues at the whole‐plant level. We used a non‐targeted gas chromatography–mass spectrometry (GC‐MS) approach to study sink and source tissue‐specific metabolite levels and ratios from bermudagrass under salinity stress. Shoot growth rate decreased while root growth rate increased which lead to an increased root/shoot growth rate ratio under salt stress. A clear shift in soluble sugars (sucrose, glucose and fructose) and metabolites linked to nitrogen metabolism (glutamate, aspartate and asparagine) in favor of sink roots was observed, when compared with sink and source leaves. The higher shifts in soluble sugars and metabolites linked to nitrogen metabolism in favor of sink roots may contribute to the root sink strength maintenance that facilitated the recovery of the functional equilibrium between shoot and root, allowing the roots to increase competitive ability for below‐ground resource capture. This trait could be considered in breeding programs for increasing salt tolerance, which would help maintain root functioning (i.e. water and nutrient absorption, Na+ exclusion) and adaptation to stress.  相似文献   

17.
为了解秦岭北坡太白红杉(Larix chinensis)的碳源/汇动态,运用BIOME-BGC模型模拟了1959-2016年太白红杉生产力、碳储量和碳利用效率(CUE),并利用气候情景设定方法预测碳源/汇功能的未来趋势。结果表明,58年间太白红杉的平均净初级生产力(NPP)、初级生产力(GPP)和净生态系统生产力(NEP)分别为328.59、501.56和31.42 g C m–2a–1,平均碳储量为35.38 kg C m–2a–1,平均CUE为0.65;除1960-1961、1969-1970、1997-1999年为"碳源"年外,绝大多数年份为"碳汇"年,年内呈现"碳源-碳汇-碳源"的变化特征,碳储量总体增加,潜在固碳能力较为稳定。GPP、NPP、碳储量的正向作用排序为气温上升CO_2浓度增加,NEP的正向作用排序反之,降水增加对生产力和碳储量增加起反作用,气温升高对CUE起反作用;气温和CO_2浓度是北坡太白红杉生长的限制因子,气温的限制性强于CO_2浓度,未来气温或CO_2浓度升高有利于碳汇功能发挥,降水增加减弱碳汇效果。RCP4.5、RCP8.5情景下太白红杉生产力和碳储量在21世纪呈上升趋势,RCP8.5上升幅度略大于RCP4.5,潜在固碳能力仍较强;1-3月和10-12月为"碳源"月,5-9月为"碳汇"月。这揭示了气候变化背景下气温、降水和CO_2浓度对太白红杉碳源/汇的影响方式,气温和CO_2浓度上升是碳汇的促进因素,降水增加为阻碍因素。  相似文献   

18.
Models of source–sink population dynamics have to make assumptions about whether, and eventually how, demographic parameters in source habitats are dependent on the demography in sink habitats. However, the empirical basis for making such assumptions has been weak. Here we report a study on experimental root vole populations, where estimates of demographic parameters were contrasted between source patches in source–sink (treatment) and source–source systems (control). In the presence of a sink patch (simulated by a pulsed removal of immigrants), source‐patch populations failed to increase over the breeding season, mainly due to a high spatially density‐dependent dispersal rate from source to sink patches. The per capita recruitment rate was almost two times higher in source–sink than in the source–source systems, but this did not compensate for the loss rate due to dispersal from source to sink patches. Sex ratio in the source–sink systems became less female biased, probably as a result of an enhanced frequency of dispersal movements in females. Good knowledge of the degree of density‐and habitat‐dependent dispersal is critical for predicting the dynamics of source–sink populations.  相似文献   

19.
This paper discusses the poly-beta-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth-order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.  相似文献   

20.
The net total uptake (sum of soluble and insoluble components)of the hexoses, D-glucose and D-fructose, into sink potato (Solanumtuberosum L.) storage parenchyma was biphasic with respect tosubstrate concentration. Analysis of radioactive products revealedthat the biphasic kinetics were composed of a linear, solublecomponent superimposed on saturating starch synthesis. In contrast,in source tuber tissue, there was negligible conversion of D-glucoseto starch and the shape of the kinetic was the result of a biphasicsoluble component. The uptake of D-fructose into source tissuewas linear with respect to substrate concentration. Uptake ofthe non-metabolizable glucose analogue, 3-oxymethyl-D-glucose(3-OMG), into both sink and source tissue, demonstrated biphasickinetics, indicating the presence of a carrier for glucose.The data demonstrate that in sink potato tubers, metabolismgreatly influences apparent uptake kinetics, the kinetics ofstarch synthesis masking the kinetics of hexose transport atthe plasmalemma. Uptake of L-glucose was linear with respectto substrate concentration, an observation consistent with thissugar not being recognized by a carrier. As in the case of sucrose, in sink tuber tissue the conversionof D-glucose and D-fructose to starch was sensitive to turgor,showing a marked optimum in external osmotica containing 300mol m–3 mannitol. The mechanisms controlling turgor-sensitivestarch synthesis in the potato tuber would, therefore, appearto be common to all three sugars. Key words: Hexose (transport), partitioning, Solanum (source, sink tubers), starch synthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号