首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Partition in aqueous dextran-polyethylene glycol two-phase systemwas used to isolate the plasma membranes from the alkalophiliccyanobacterium Spirulina platensis. The upper phase containeda colorless membranes obtained in relatively short time, 3–4h. This fraction had a different protein profile than that ofthe thylakoid fraction obtained in the lower phase. It did notcontain cytochrome c-oxidase activity, but retained characteristicMg2+-ATPase activity that is sensitive to vanadate, stimulatedby K+, and has a pH optimum near 8.5. These data support ourassumption that the upper phase of the gradient consist of theplasma membrane of S. platensis. (Received November 25, 1993; Accepted April 12, 1994)  相似文献   

3.
Electron transfer activity in intact trichomes of Spirulina platensis (Nordst.) Geitl. can be observed with either CO2 or methylviologen as the Hill acceptor. Ferricyanide cannot penetrate the intact trichomes, but photoreduction of this oxidant can be observed when mediated by lipophilic oxidants such as p-phenylenediamine or 2,5-dimethyl-p-benzoquinone. The insensitivity of these reactions to dibromothymoquinone indicates that they are due largely to the activity of photosystem II. Direct photoreduction of ferricyanide can be observed in spheroplasts of Spirulina, indicating that such preparations have altered permeability properties when compared with intact trichomes. Preparation of these spheroplasts, which are osmotically fragile, requires that intact trichomes be washed with KCl and EDTA to induce lysozyme sensitivity and thereby allow digestion of the cell wall. The KCl/EDTA washing procedure used for spheroplast preparation alters the permeability of Spirulina trichomes, as evidenced by the ability of these preparations to photoreduce ferricyanide. This photoreduction reaction is insensitive to dibromothymoquinone, and is stimulated by high concentrations of divalent cations. During assays, the reaction is inhibited by the inclusion of polyethyleneglycol as an osmotic protectant. Photoreduction of methylviologen and NADP+ is also observed in the washed trichomes, along with an endogenously catalyzed photoreduction of O2 to H2O2. Photophosphorylation cannot be observed in the washed preparations, but cyclic photophosphorylation with phenazinemethosulfate is observed after mild sonication. These results indicate that KCl/EDTA-washed trichomes of S. platensis retain the full range of energy transducing capacities associated with thylakoid membranes of the intact trichomes; the washing procedure facilitates spheroplast formation and alters, but does not abolish, permeability barriers in these preparations.  相似文献   

4.
钝顶螺旋藻突变株FBL细胞超微结构   总被引:1,自引:0,他引:1  
利用透射电镜技术观察钝顶螺旋藻出发株和突变株FBL的细胞超微结构。观察结果表明L出发株和突变株均为多细胞丝状体,细胞间横隔膜清晰,细胞壁均由四层结构组成,细胞质膜内陷形成类囊体,类囊体由双层膜堆积而成,膜上附着藻胆体,类囊体与细胞壁呈垂直方向排列,细胞质内包含有充气液泡等细胞器。与出发株相比,突变株细胞壁表面较光滑,四层结构电子密度较深;类囊体膜增多、变发达;羧化体数量增多;横隔膜收缢明显。  相似文献   

5.
A dense suspension of Spirulina platensis trichomes aggregatedrapidly and formed a diskshaped algal mat when cAMP was added.Cyclic AMP significantly stimulated algal mat formation at concentrationsas low as 10–7 M. Stimulation of the mat formation wasmost rapid at about 10–5M cAMP, but higher concentrationswere not increasingly effective. Other nucleotides such as cGMP,ATP and AMP showed no stimulatory effect on algal mat formation.CCCP, an inhibitor of ATP synthesis, was found to suppress thecAMP-stimulated algal mat formation. Cyclic AMP also stimulatedrespiration and gliding movement of this cyanobacterium. (Received September 2, 1991; Accepted October 15, 1991)  相似文献   

6.
Two strains of Spirulina platensis, marked Sp-G and Sp-RB, werestudied for their response to high photon flux densities (PFD).Sp-RB, a gas vacuolated strain, appeared more sensitive to thehigh PFD treatment as compared with Sp-G, a non-vacuolated strain.The loss of the photosynthetic activity due to the photoinhibitorytreatment was obtained at the level of whole cells as well asthe membrane level. Sp-RB was more sensitive than Sp-G at bothlevels. Experiments using chloramphenicol during the photoinhibitionprocess, and others in which the fate of radio-active labeledthylakoid proteins was followed, indicated that the differencebetween the strains lies in the rate of loss of the Dl polypeptidewith an electrophoretic mobility of 32–34 kDa. Both strainsrecovered from the photoinhibition when placed under low PFD.The recovery process started immediately after PFD was reduced,without any observed lag period, and was sensitive to chloramphenicol.Light was required for full recovery of activity. The rate ofrecovery of the two strains studied was very similar. 1Contribution no. 29 of the Micro-Algal Biotechnology Lab. (Received January 11, 1988; Accepted March 31, 1988)  相似文献   

7.
Phycobilisomes from the nonchromatic adapting cyanobacterium Spirulina platensis are composed of a central core containing allophycocyanin and rods with phycocyanin and linker polypeptides in a regular array. Room temperature absorption spectra of phycobilisomes from this organism indicated the presence of phycocyanin and allophycocyanin. However, low temperature absorption spectra showed the association of a phycobiliviolin type of chromophore within phycobilisomes. This chromophore had an absorption maximum at 590 nanometers when phycobilisomes were suspended in 0.75 molar K-phosphate buffer (pH 7.0). Purified phycocyanin from this cyanobacterium was found to consist of three subparticles and the phycobiliviolin type of chromophore was associated with the lowest density subparticle. Circular dichroism spectra of phycocyanin subparticles also indicated the association of this chromophore with the lowest density subparticle. Absorption spectral analysis of α and β subunits of phycocyanin showed that phycobiliviolin type of chromophore was attached to the α subunit, but not the β subunit. Effect of light quality showed that green light enhanced the synthesis of this chromophore as analyzed from the room temperature absorption spectra of phycocyanin subparticles and subunits, while red or white light did not have any effect. Low temperature absorption spectra of phycobilisomes isolated from green, red, and white light conditions also indicated the enhancement of phycobiliviolin type of chromophore under green light.  相似文献   

8.
Incubation of cells of the cyanobacterium Spirulina platensis under conditions of exposure to low-intensity (2–3 E m–2 s–1) red light, which was predominantly absorbed by photosystem I (PS I), caused atypical adaptation changes. Invariable pigment composition and stoichiometry of the photosystems was observed in the cells incubated under these conditions against the background of a decrease in the rate of photosynthetic fixation of 2 (by one-half) and a 1.5-fold increase in the rate of dark respiration relative to cells incubated under conditions of exposure to green light. Comparison of these data with a high rate of dark relaxation of P700+ in the presence of diuron suggests that deficiency of reduced equivalents on the donor side of PS I in Spirulina cells exposed to red light is compensated by electron supply from the respiratory chain NAD(P)H dehydrogenase complex.  相似文献   

9.
Resistance of Spirulina platensis to Ammonia at High pH Values   总被引:2,自引:0,他引:2  
Spirulina platensis is an alkalophilic cyanobacterium, exhibitingoptimal growth at pH 9.0 to 10.0. It grows well at pH 11.5 butnot at pH 7.0. Unlike many other photosynthetic microorganisms,it is capable of utilizing ammonia3 even at high pH values,and is resistant to the ammonia-mediated uncoupling of photosynthesis.The entry of ammonia into the cells is pH-dependent, and islimited by a relatively high average internal pH. This highpH value appears to be maintained predominantly by a high intrathylakoidpH. (Received November 20, 1990; Accepted July 3, 1991)  相似文献   

10.
High light stress (40 W/m2)-induced alterations in the nitrogen assimilatory enzymes in Spirulina platensis were studied under the Ca2+ and phosphate (Pi)-supplemented as well as starved conditions. Results revealed that activities of nitrate reductase (NR), amino acid transferases (AST/GOT and ALT/GPT), and protease enzymes in the high-light-incubated cells were relatively higher under the Ca2+- and Pi-starved conditions. On the contrary, relative rates of glutamine synthetase (GS) and ATPase activities were lower in the Ca2+- and Pi-starved cells. But the Spirulina cells under the Ca2+- and Pi-added conditions showed enhanced activity of both GS and ATPase enzymes. During the high-light stress, a decline in the GS activity, particularly under the Ca2+- and Pi-starved conditions, was indicative of a nitrogen starvation-like condition. This could be one of the reasons for induction of the NR and protease enzymes. A higher rate of GS activity was recorded under both the Ca2+- and Pi-supplemented conditions, perhaps owing to the enhanced rate of ATPase activity in such conditions. But a declining pattern of both NR and protease activities in the presence of Ca2+ and Pi, despite the higher rate of ATPase activity, might involve some other mechanism like the protein-kinase system. Received: 11 May 2000 / Accepted: 13 June 2000  相似文献   

11.
12.
Unilateral irradiation of maize (Zea mays L.) seedlings results in a fluence-rate gradient, and hence below saturation, a gradient of the far-red-absorbing form of phytochrome (Pfr). The Pfr-gradients established by blue, red and far-red light were spectrophotometrically measured in the mesocotyl. Based on these Pfr-gradients and the fluence-response curves of phytochrome photoconversion the fluence-rate gradients were calculated. The fluence-rate gradient in the blue (460 nm) was steeper than that in the red (665 nm), which in turn was steeper than that in the far-red light (725 nm). The fluence-rate ratios front to rear were 1:0.06 (460 nm), 1:0.2 (665 nm), and 1:0.33 (725 nm). The assumption that phytochrome-mediated phototropism of maize mesocotyls is caused by local phytochrome-mediated growth inhibition was tested in the following manner. Firstly, the Pfr response curve for growth inhibition was calculated; these calculations were based on measurements of Pfr-gradients and data from red-light-induced phototropism. Secondly, the Pfr response curve for growth inhibition was used as a basis for calculating fluence-response curves for blue-and far-red-light-induced phototropism. Finally, these calculated results were compared with experimental data. It was concluded that the threshold for phytochrome-mediated phototropism of maize mesocotyls reflects the apparent photoconversion cross section of phytochrome whereas the maximal inducable curvature depends on the steepness of the light (Pfr) gradient across the mesocotyl.Abbreviations Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Fr far-red light  相似文献   

13.
The intracellular concentration of cAMP increased rapidly when3-isobutyl-l-methylxanthine (IBMX), an inhibitor of cAMP phosphodiesterase,was added to a suspension of Spirulina platensis cells. Additionof IBMX also enhanced respiratory activity and cell motilityand, as a consequence, a floating algal mat was induced. (Received July 31, 1992; Accepted November 9, 1992)  相似文献   

14.
15.
The growth of the blue-green algae Spirulina platensis and Spirulina maxima, cultured in complete mineral Zarouk medium containing Na+ or Na+-deficient medium, was studied over a period of 24 h. The optical densities of S. platensis and S. maxima cells, determined during the last hour of exposure to sodium deficiency, amounted to 55.6 and 32.6%, respectively, of the optical densities of the same cells grown in complete Zarouk medium. Moreover, the cultures grown in Na+-deficient medium exhibited increased ability to take up sodium (which was low in S. platensis and S. maxima cells cultured in complete mineral medium). It is concluded that the two species studied are characterized by periodic, on the order of minutes, changes in the cellular uptake and release of sodium.  相似文献   

16.
Protoplasts were obtained from the filamentous blue-green algaSpirulina platensis by treating the filaments with 0.05% (w/v) lysozyme in 0.03m phosphate buffer. The protoplasts regenerated cell walls and formed colonies when plated on a regeneration medium. The highest percentage of regeneration, 40% was obtained after 21 days.  相似文献   

17.
Accumulation of poly-beta-hydroxybutyrate in Spirulina platensis.   总被引:3,自引:1,他引:2       下载免费PDF全文
Poly-beta-hydroxybutyrate has been identified in the cyanobacterium Spirulina platensis. The addition of reduced carbon compounds to the growth medium was not required for poly-beta-hydroxybutyrate accumulation. Poly-beta-hydroxybutyrate accumulated during exponential growth to 6% of the total dry weight and then decreased during the stationary phase.  相似文献   

18.
In this investigation, we report on the biosorption of Pb (II) from aqueous solutions by the nonliving biomass of the micro-alga (cyanobacterium) Spirulina platensis. Propagation of the micro-alga was carried out in outside oblong raceway ponds. The biomass was cleaned, dried and used for the investigation. The effects of pH, adsorbent dose, temperature, initial concentration of Pb (II), and contact time on the adsorption of lead by the dry biomass were studied. The experiments were carried out in 250 ml conical flasks containing 100 ml of test solutions using an orbital incubator at 150 rpm. Concentrations of the metal before and after the experiments were measured using Atomic Absorption Spectrophotometer. Very high levels of Pb (II) removal (>91%) were obtained. The optimum conditions for maximal adsorption by S. platensis were found to be pH 3; 2 g of adsorbent dose; incubation at 26°C; 100 mg/l of lead initial concentration and 60 minutes of contact time. The experimental data fitted well with Freundlich isotherm equation with R2 values greater than 0.97. Based on our results, we recommend the utilization of S. platensis biomass for heavy metal removal from aqueous solutions.  相似文献   

19.
Mercury, at a low concentration (3 µM) caused an enhancementin the intensity of room temperature fluorescence emitted byphycocyanin and induced a blue shift in the emission peak ofSpirulina cells indicating the alterations in the energy transferwithin the phycobilisomes. In vitro the isolated intact Spirulinaphycobilisomes from control cells exhibited only a reductionin fluorescence yield with low concentration of HgCl2 withoutbeing accompanied by changes in the emission features, whereasthe isolated phycobilisomes from mercury treated cells exhibitedthe alterations in the spectral characteristics at the levelof phycocyanin. When isolated phycocyanin and allophycocyaninwere exposed to very low concentrations of Hg2* ions, C-phycocyaninexhibited a large decrease in the absorbance in the longer wavelength(615–620 nm) region, but not allophycocyanin. In addition,mercury also caused a monotonous decrease in the C-phycocyaninemission intensity at 646 nm accompanied by a blue shift to642 nm. These results on isolated C-phycocyanin suggest thatselective bleaching of beta-84 chromophore of phycocyanin isinduced by mercury. The differential effect of mercury towardsC-phycocyanin and allophycocyanin could possibly be due to thedifference in the protein conformation of phycocyanin and allophycocyanin. (Received July 11, 1990; Accepted December 17, 1990)  相似文献   

20.
Dry biomass of Spirulina platensis re-hydrated for 48 h was employed as a biosorbent in tests of cadmium(II) removal from water. Various concentrations of biomass (from 1 to 4 g l−1) and metal (from 100 to 800 mg l−1) were tested. Low biomass levels (Xo  2 g l−1) ensured metal removal up to 98% only at Cd0= 100 and 200 mg l−1, while Xo  2.0 g l−1 were needed at Cd0 = 400 mg l−1 to achieve satisfactory results. Whereas Xo = 4.0 g l−1 was effective to remove up to Cd0 = 500 mg l−1, a further increase in metal concentration (Cd0 = 600 and 800 mg l−1) led to progressive worsening of the system performance. At a given biomass levels, the kinetics of the process was better at low Cd2+ concentrations, while, raising the adsorbent level from 1.0 to 2.0 g l−1 and then to 4.0 g l−1, the rate constant of biosorption increased by about one order of magnitude in both cases and the adsorption capacity of the system progressively decreased from 357 to 149 mg g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号