首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The copula of a bivariate distribution, constructed by making marginal transformations of each component, captures all the information in the bivariate distribution about the dependence between two variables. For frailty models for bivariate data the choice of a family of distributions for the random frailty corresponds to the choice of a parametric family for the copula. A class of tests of the hypothesis that the copula is in a given parametric family, with unspecified association parameter, based on bivariate right censored data is proposed. These tests are based on first making marginal Kaplan-Meier transformations of the data and then comparing a non-parametric estimate of the copula to an estimate based on the assumed family of models. A number of options are available for choosing the scale and the distance measure for this comparison. Significance levels of the test are found by a modified bootstrap procedure. The procedure is used to check the appropriateness of a gamma or a positive stable frailty model in a set of survival data on Danish twins.  相似文献   

2.
Parametric and semiparametric cure models have been proposed for cure proportion estimation in cancer clinical research. In this paper, several parametric and semiparametric models are compared, and their estimation methods are discussed within the framework of the EM algorithm. We show that the semiparametric PH cure model can achieve efficiency levels similar to those of parametric cure models, provided that the failure time distribution is well specified and uncured patients have an increasing hazard rate. Therefore the semiparametric model is a viable alternative to parametric cure models. When the hazard rate of uncured patients is rapidly decreasing, the estimates from the semiparametric cure model tend to have large variations and biases. However, all other models also tend to have large variations and biases in this case.  相似文献   

3.
Pairwise dependence diagnostics for clustered failure-time data   总被引:1,自引:0,他引:1  
Glidden  David V. 《Biometrika》2007,94(2):371-385
Frailty and copula models specify a parametric dependence structurefor multivariate failure-time data. Estimation of some jointquantities can be highly sensitive to the assumed parametricform, and hence model fit is an important issue. This paperlays out a general diagnostic framework for evaluating and selectingfrailty and copula models. The approach is based on the cumulativesum of residuals that are calculated in bivariate time. Theresiduals reflect the difference between the observed and expectedbivariate association structures. The proposed model-checkingprocess is interpretable with a limiting distribution whichcan be approximated using the bootstrap. Simulations and a dataexample illustrate the practical application of the method.  相似文献   

4.
Reeves’s Pheasant Syrmaticus reevesii is a vulnerable forest bird inhabiting broadleaved habitats dominated by oaks Quercus spp. in central China. Identifying home‐ranges and habitat associations is important for understanding the biology of this species and developing effective management and conservation plans. We used information‐theoretic criteria to evaluate the relative performance of four parametric (exponential power, one‐mode bivariate normal, two‐mode bivariate normal and two‐mode bivariate circle) and two non‐parametric models (adaptive and fixed kernel) for estimating home‐ranges and habitat associations of Reeves’s Pheasants. For parametric models, Akaike’s information criterion (AICc) and the likelihood cross‐validation criterion (CVC) were relatively consistent in ranking the bivariate exponential power model the least acceptable, whereas the two‐mode bivariate models performed better. The CVC suggested that kernel models, particularly the adaptive kernel, performed best among all six models evaluated. The average core area and 95% contour area based on the model with greatest support were 6.1 and 54.9 ha, respectively, and were larger than those estimated from other models. The discrepancy in estimates between models with highest and the lowest support decreased as the contour size increased; however, home‐range shapes differed between models. Minimum convex polygons that removed 5% of extreme data points (MCP95) were roughly half the size of home‐ranges based on kernel models. Estimates of home‐range and model evaluation were not affected by sample size (> 50 observations for each bird). Inference about habitat preference based on composition analysis and home‐range overlap varied between models. That with strongest support suggested that Reeves’s Pheasants selected mature fir and mixed forest, avoided farmland, and had mean among‐individual home‐range overlaps of 20%. We recommend non‐parametric methods, particularly the adaptive kernel method, for estimating home‐ranges and core areas for species with complex multi‐polar habitat preferences in heterogeneous environments with large habitat patches. However, we caution against the traditional convenience of using a single model to estimate home‐ranges and recommend exploration of multiple models for describing and understanding the ecological processes underlying space use and habitat associations.  相似文献   

5.
Naskar M  Das K 《Biometrics》2006,62(4):1004-1013
In medical studies, paired binary responses are often observed for each study subject over timepoints or clusters. A primary interest is to investigate how the bivariate association and marginal univariate risks are affected by repeated measurements on each subject. To achieve this we propose a very general class of semiparametric bivariate binary models. The subject-specific effects involved in the bivariate log odds ratio and the univariate logit components are assumed to follow a nonparametric Dirichlet process (DP). We propose a hybrid method to draw model-based inferences. In the framework of the proposed hybrid method, estimation of parameters is done by implementing the Monte Carlo expectation-maximization algorithm. The proposed methodology is illustrated through a study on the effectiveness of tibolone for reducing menopausal problems experienced by Indian women. A simulation study is also conducted to evaluate the efficiency of the new methodology.  相似文献   

6.
Yue Wei  Yi Liu  Tao Sun  Wei Chen  Ying Ding 《Biometrics》2020,76(2):619-629
Several gene-based association tests for time-to-event traits have been proposed recently to detect whether a gene region (containing multiple variants), as a set, is associated with the survival outcome. However, for bivariate survival outcomes, to the best of our knowledge, there is no statistical method that can be directly applied for gene-based association analysis. Motivated by a genetic study to discover the gene regions associated with the progression of a bilateral eye disease, age-related macular degeneration (AMD), we implement a novel functional regression (FR) method under the copula framework. Specifically, the effects of variants within a gene region are modeled through a functional linear model, which then contributes to the marginal survival functions within the copula. Generalized score test statistics are derived to test for the association between bivariate survival traits and the genetic region. Extensive simulation studies are conducted to evaluate the type I error control and power performance of the proposed approach, with comparisons to several existing methods for a single survival trait, as well as the marginal Cox FR model using the robust sandwich estimator for bivariate survival traits. Finally, we apply our method to a large AMD study, the Age-related Eye Disease Study, and to identify the gene regions that are associated with AMD progression.  相似文献   

7.
Heagerty PJ 《Biometrics》2002,58(2):342-351
Marginal generalized linear models are now frequently used for the analysis of longitudinal data. Semiparametric inference for marginal models was introduced by Liang and Zeger (1986, Biometrics 73, 13-22). This article develops a general parametric class of serial dependence models that permits likelihood-based marginal regression analysis of binary response data. The methods naturally extend the first-order Markov models of Azzalini (1994, Biometrika 81, 767-775) and prove computationally feasible for long series.  相似文献   

8.
Coalescent-based inference of phylogenetic relationships among species takes into account gene tree incongruence due to incomplete lineage sorting, but for such methods to make sense species have to be correctly delimited. Because alternative assignments of individuals to species result in different parametric models, model selection methods can be applied to optimise model of species classification. In a Bayesian framework, Bayes factors (BF), based on marginal likelihood estimates, can be used to test a range of possible classifications for the group under study. Here, we explore BF and the Akaike Information Criterion (AIC) to discriminate between different species classifications in the flowering plant lineage Silene sect. Cryptoneurae (Caryophyllaceae). We estimated marginal likelihoods for different species classification models via the Path Sampling (PS), Stepping Stone sampling (SS), and Harmonic Mean Estimator (HME) methods implemented in BEAST. To select among alternative species classification models a posterior simulation-based analog of the AIC through Markov chain Monte Carlo analysis (AICM) was also performed. The results are compared to outcomes from the software BP&P. Our results agree with another recent study that marginal likelihood estimates from PS and SS methods are useful for comparing different species classifications, and strongly support the recognition of the newly described species S. ertekinii.  相似文献   

9.
Hierarchical models are recommended for meta-analyzing diagnostic test accuracy (DTA) studies. The bivariate random-effects model is currently widely used to synthesize a pair of test sensitivity and specificity using logit transformation across studies. This model assumes a bivariate normal distribution for the random-effects. However, this assumption is restrictive and can be violated. When the assumption fails, inferences could be misleading. In this paper, we extended the current bivariate random-effects model by assuming a flexible bivariate skew-normal distribution for the random-effects in order to robustly model logit sensitivities and logit specificities. The marginal distribution of the proposed model is analytically derived so that parameter estimation can be performed using standard likelihood methods. The method of weighted-average is adopted to estimate the overall logit-transformed sensitivity and specificity. An extensive simulation study is carried out to investigate the performance of the proposed model compared to other standard models. Overall, the proposed model performs better in terms of confidence interval width of the average logit-transformed sensitivity and specificity compared to the standard bivariate linear mixed model and bivariate generalized linear mixed model. Simulations have also shown that the proposed model performed better than the well-established bivariate linear mixed model in terms of bias and comparable with regards to the root mean squared error (RMSE) of the between-study (co)variances. The proposed method is also illustrated using a published meta-analysis data.  相似文献   

10.
The augmentation of categorical outcomes with underlying Gaussian variables in bivariate generalized mixed effects models has facilitated the joint modeling of continuous and binary response variables. These models typically assume that random effects and residual effects (co)variances are homogeneous across all clusters and subjects, respectively. Motivated by conflicting evidence about the association between performance outcomes in dairy production systems, we consider the situation where these (co)variance parameters may themselves be functions of systematic and/or random effects. We present a hierarchical Bayesian extension of bivariate generalized linear models whereby functions of the (co)variance matrices are specified as linear combinations of fixed and random effects following a square‐root‐free Cholesky reparameterization that ensures necessary positive semidefinite constraints. We test the proposed model by simulation and apply it to the analysis of a dairy cattle data set in which the random herd‐level and residual cow‐level effects (co)variances between a continuous production trait and binary reproduction trait are modeled as functions of fixed management effects and random cluster effects.  相似文献   

11.
When two binary responses are measured for each study subject across time, it may be of interest to model how the bivariate associations and marginal univariate risks involving the two responses change across time. To achieve such a goal, marginal models with bivariate log odds ratio and univariate logit components are extended to include random effects for all components. Specifically, separate normal random effects are specified on the log odds ratio scale for bivariate responses and on the logit scale for univariate responses. Assuming conditional independence given the random effects facilitates the modeling of bivariate associations across time with missing at random incomplete data. We fit the model to a dataset for which such structures are feasible: a longitudinal randomized trial of a cardiovascular educational program where the responses of interest are change in hypertension and hypercholestemia status. The proposed model is compared to a naive bivariate model that assumes independence between time points and univariate mixed effects logit models.  相似文献   

12.
Nonparametric estimation of the bivariate recurrence time distribution   总被引:2,自引:0,他引:2  
Huang CY  Wang MC 《Biometrics》2005,61(2):392-402
This article considers statistical models in which two different types of events, such as the diagnosis of a disease and the remission of the disease, occur alternately over time and are observed subject to right censoring. We propose nonparametric estimators for the joint distribution of bivariate recurrence times and the marginal distribution of the first recurrence time. In general, the marginal distribution of the second recurrence time cannot be estimated due to an identifiability problem, but a conditional distribution of the second recurrence time can be estimated non-parametrically. In the literature, statistical methods have been developed to estimate the joint distribution of bivariate recurrence times based on data on the first pair of censored bivariate recurrence times. These methods are inefficient in the model considered here because recurrence times of higher orders are not used. Asymptotic properties of the proposed estimators are established. Numerical studies demonstrate the estimators perform well with practical sample sizes. We apply the proposed method to the South Verona, Italy, psychiatric case register (PCR) data set for illustration of the methods and theory.  相似文献   

13.
The analyses of observational longitudinal studies involving concurrent changes in treatment and medical conditions present difficulties because of the multitude of directions of potential relationships: past medication influences current symptoms; past symptoms influence current medication; and current medication is associated with current symptoms. In the context of a long-term study of non-randomized pharmacological treatment of schizophrenic relapse, we present an analysis of bivariate discrete-time transitional data with binary responses in an attempt to understand the transitional and concurrent relationships between schizophrenia relapse and medication use. A naive analysis does not show any association between previous medication and current relapse. However, we provide evidence suggesting that current treatment may impact current relapse for those who have previously taken medication, but not for those who haven't taken medication in the past. When univariate models are specified to assess these associations, the bivariate nature of the problem requires a choice of which response, relapse or medication, should be the dependent variable. In this case, the choice of relapse or medication as a dependent variable does matter. Hence, our results derive from models where both relapse and medication are treated as dependent variables. Specifically, we specify a bivariate log odds ratio for current relapse and current medication use and a separate univariate logit component for each of these outcomes. Each of these components contains transitional associations with previous relapse and medication. Such models represent extensions of univariate transitional association models (e.g. Diggle et al. (1994)) and correspond to bivariate transitional models (e.g. Zeger and Liang (1991)). We incorporate changes in transitional associations into the full-data parametric model for final inference, and investigate if these temporal changes are due to learning effects or the impact of drop-out. We also perform residual analyses and sensitivity analyses in the context of missing data patterns.  相似文献   

14.
Wood SN 《Biometrics》2006,62(4):1025-1036
A general method for constructing low-rank tensor product smooths for use as components of generalized additive models or generalized additive mixed models is presented. A penalized regression approach is adopted in which tensor product smooths of several variables are constructed from smooths of each variable separately, these "marginal" smooths being represented using a low-rank basis with an associated quadratic wiggliness penalty. The smooths offer several advantages: (i) they have one wiggliness penalty per covariate and are hence invariant to linear rescaling of covariates, making them useful when there is no "natural" way to scale covariates relative to each other; (ii) they have a useful tuneable range of smoothness, unlike single-penalty tensor product smooths that are scale invariant; (iii) the relatively low rank of the smooths means that they are computationally efficient; (iv) the penalties on the smooths are easily interpretable in terms of function shape; (v) the smooths can be generated completely automatically from any marginal smoothing bases and associated quadratic penalties, giving the modeler considerable flexibility to choose the basis penalty combination most appropriate to each modeling task; and (vi) the smooths can easily be written as components of a standard linear or generalized linear mixed model, allowing them to be used as components of the rich family of such models implemented in standard software, and to take advantage of the efficient and stable computational methods that have been developed for such models. A small simulation study shows that the methods can compare favorably with recently developed smoothing spline ANOVA methods.  相似文献   

15.
The traditional frailty models used in genetic analysis of bivariate survival data assume that individual frailty (and longevity) is influenced by thousands of genes, and that the contribution of each separate gene is small. This assumption, however, does not have a solid biological basis. It may just happen that one or a small number of genes makes a major contribution to determining the human life span. To answer the questions about the nature of the genetic influence on life span using survival data, models are needed that specify the influence of major genes on individual frailty and longevity. The goal of this paper is to test the nature of genetic influences on individual frailty and longevity using survival data on Danish twins. We use a new bivariate survival model with one major gene influencing life span to analyse survival data on MZ (monozygotic) and DZ (dizygotic) twins. The analysis shows that two radically different classes of model provide an equally good fit to the data. However, the asymptotic behaviour of some conditional statistics is different in models from different classes. Because of the limited sample size of bivariate survival data we cannot draw reliable conclusions about the nature of genetic effects on life span. Additional information about tails of bivariate distribution or risk factors may help to solve this problem.  相似文献   

16.
17.
Joint modeling of various longitudinal sequences has received quite a bit of attention in recent times. This paper proposes a so‐called marginalized joint model for longitudinal continuous and repeated time‐to‐event outcomes on the one hand and a marginalized joint model for bivariate repeated time‐to‐event outcomes on the other. The model has several appealing features. It flexibly allows for association among measurements of the same outcome at different occasions as well as among measurements on different outcomes recorded at the same time. The model also accommodates overdispersion. The time‐to‐event outcomes are allowed to be censored. While the model builds upon the generalized linear mixed model framework, it is such that model parameters enjoy a direct marginal interpretation. All of these features have been considered before, but here we bring them together in a unified, flexible framework. The model framework's properties are scrutinized using a simulation study. The models are applied to data from a chronic heart failure study and to a so‐called comet assay, encountered in preclinical research. Almost surprisingly, the models can be fitted relatively easily using standard statistical software.  相似文献   

18.
Sequentially observed survival times are of interest in many studies but there are difficulties in analyzing such data using nonparametric or semiparametric methods. First, when the duration of followup is limited and the times for a given individual are not independent, induced dependent censoring arises for the second and subsequent survival times. Non-identifiability of the marginal survival distributions for second and later times is another issue, since they are observable only if preceding survival times for an individual are uncensored. In addition, in some studies a significant proportion of individuals may never have the first event. Fully parametric models can deal with these features, but robustness is a concern. We introduce a new approach to address these issues. We model the joint distribution of the successive survival times by using copula functions, and provide semiparametric estimation procedures in which copula parameters are estimated without parametric assumptions on the marginal distributions. This provides more robust estimates and checks on the fit of parametric models. The methodology is applied to a motivating example involving relapse and survival following colon cancer treatment.  相似文献   

19.
Heagerty PJ  Zeger SL 《Biometrics》2000,56(3):719-732
We develop semiparametric estimation methods for a pair of regressions that characterize the first and second moments of clustered discrete survival times. In the first regression, we represent discrete survival times through univariate continuation indicators whose expectations are modeled using a generalized linear model. In the second regression, we model the marginal pairwise association of survival times using the Clayton-Oakes cross-product ratio (Clayton, 1978, Biometrika 65, 141-151; Oakes, 1989, Journal of the American Statistical Association 84, 487-493). These models have recently been proposed by Shih (1998, Biometrics 54, 1115-1128). We relate the discrete survival models to multivariate multinomial models presented in Heagerty and Zeger (1996, Journal of the American Statistical Society 91, 1024-1036) and derive a paired estimating equations procedure that is computationally feasible for moderate and large clusters. We extend the work of Guo and Lin (1994, Biometrics 50, 632-639) and Shih (1998) to allow covariance weighted estimating equations and investigate the impact of weighting in terms of asymptotic relative efficiency. We demonstrate that the multinomial structure must be acknowledged when adopting weighted estimating equations and show that a naive use of GEE methods can lead to inconsistent parameter estimates. Finally, we illustrate the proposed methodology by analyzing psychological testing data previously summarized by TenHave and Uttal (1994, Applied Statistics 43, 371-384) and Guo and Lin (1994).  相似文献   

20.
A time-dependent measure, termed the rate ratio, was proposed to assess the local dependence between two types of recurrent event processes in one-sample settings. However, the one-sample work does not consider modeling the dependence by covariates such as subject characteristics and treatments received. The focus of this paper is to understand how and in what magnitude the covariates influence the dependence strength for bivariate recurrent events. We propose the covariate-adjusted rate ratio, a measure of covariate-adjusted dependence. We propose a semiparametric regression model for jointly modeling the frequency and dependence of bivariate recurrent events: the first level is a proportional rates model for the marginal rates and the second level is a proportional rate ratio model for the dependence structure. We develop a pseudo-partial likelihood to estimate the parameters in the proportional rate ratio model. We establish the asymptotic properties of the estimators and evaluate the finite sample performance via simulation studies. We illustrate the proposed models and methods using a soft tissue sarcoma study that examines the effects of initial treatments on the marginal frequencies of local/distant sarcoma recurrence and the dependence structure between the two types of cancer recurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号