首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A lambda gt11 cDNA library was constructed using poly(A)+ mRNA from thyrotropin (TSH)-stimulated Fisher rat thyroid (FRTL5) cells. The library was screened for nonthyroglobulin cDNA sequences by differential plaque filter hybridization using single-stranded cDNA probes synthesized from mRNA prepared from quiescent and TSH-stimulated FRTL5 cells. Thyroglobulin cDNA-containing recombinants in the library were avoided by prehybridizing the TSH probe to excess thyroglobulin cDNA. Of 48,000 clones screened, 60 were chosen as representing mRNA species whose abundance was increased in TSH-stimulated versus quiescent cultures. Southern blot analysis of 9 clones confirmed that the TSH-cDNA probe hybridized to a greater extent to the cDNA inserts than did the control probe. cDNA insert sizes varied between 0.3 kilobase (kb) and 1.0 kb. Northern slot blot analysis using as probes the cDNA of four of these clones (FC4, FC26, FC29, and FC43) demonstrated that TSH stimulation of FRTL5 cells increased the steady state levels of the respective mRNA species by 4-12-fold. For all 4 clones, increases in mRNA levels were apparent within approximately 1 h and were maximal after 14-18 h of TSH stimulation. Determination of the partial nucleotide sequence of these 4 clones confirmed that none was thyroglobulin, thyroid peroxidase, or any other gene previously reported to be stimulated by TSH. Three of the clones bore no homology to any known nucleotide sequence, but FC26 was 85% homologous with human ferritin H. Northern blot analysis using the FC26 cDNA insert as a probe confirmed hybridization to an mRNA species of 1 kb, the known size of ferritin H mRNA. In summary, using the technique of differential plaque filter hybridization, we have identified 4 new genes whose mRNA levels are increased by TSH stimulation of thyroid cells. One of these genes is homologous to human ferritin H.  相似文献   

3.
4.
We have studied the effects of thyrotropin (TSH) on the growth and on the levels of the mRNAs of the cellular proto-oncogenes, c-myc, and c-fos, in the specific target of TSH action, the thyroid follicular cell. FRTL5 cells, a cloned line from normal rat thyroid gland that depends upon TSH for its replication, were maintained in a quiescent state for 5 days by keeping them in a medium devoid of serum or TSH. The addition of bovine TSH (bTSH, 1 nM) increased DNA synthesis and stimulated cell proliferation after a lag period of 24 h. This growth response was anteceded by prompt, but transient, increases in the levels of c-myc and c-fos mRNAs, with peak responses at 60 and 30 min, respectively. The minimally and maximally effective concentrations of bTSH were 0.01 mM and 1.0 nM, respectively. Dibutyryl cAMP (Bt2cAMP) stimulated cell growth and increased the level of c-myc mRNA in a concentration-dependent manner, with maximum effects at a Bt2cAMP concentration of 1 mM. At the single concentration tested (1 mM), Bt2cAMP also increased the level of c-fos mRNA. Hence, bTSH-stimulated mitogenesis in quiescent FRTL5 cells is associated with rapid, but short-lived, increases in the levels of the mRNAs of the proto-oncogenes, c-myc and c-fos. Since bTSH is known to stimulate adenylate cyclase in these cells, and since the effect of TSH on c-myc and c-fos mRNAs is mimicked by Bt2cAMP, it is possible that these responses to bTSH are mediated, at least in part, by cAMP.  相似文献   

5.
6.
7.
8.
9.
Addition of specific anti-fucosyl GM1 antibody raised in a rabbit caused dose-dependent inhibition of endogenous and thyrotropin (TSH)- or thyroid stimulating antibody-stimulated cyclic adenosine 3',5'-monophosphate (cAMP) production in cultured FRTL5 rat thyroid cells. Further, the antibody inhibited the cAMP increase induced by prostaglandin E1 and forskolin. However, anti-fucosyl GM1 antibody did not affect the binding of [125I]bovine TSH to solubilized porcine thyroid TSH receptor or to FRTL5 cells. In conclusion, fucosyl GM1 is one of the specific membrane components of thyrocytes and appears to be involved in adenylate cyclase stimulation or cAMP generation. Further, the biological effects of the ganglioside do not seem to be mediated by the TSH receptor, suggesting a post receptor mechanism.  相似文献   

10.
11.
12.
W H Dere  H Hirayu  B Rapoport 《FEBS letters》1986,196(2):305-308
We examined the effect of thyrotropin (TSH) on intracellular levels of c-ras mRNA in a line of differentiated rat thyroid cells obtained from normal Fischer rat thyroids. These cells are totally dependent on TSH for growth. TSH stimulation of quiescent cells increased c-ras mRNA content, with a maximal response (730% of basal) after 6 h, and a decline towards basal levels after 24 h. Dibutyryl cAMP and forskolin mimicked this stimulatory effect of TSH on c-ras, but did not enhance beta-actin mRNA content. This study demonstrates hormonal and cyclic nucleotide control of c-ras expression in a well-differentiated, non-tumorogenic mammalian cell.  相似文献   

13.
In FRTL5 thyroid cells, endothelin (ET)-1 alone had no effect on DNA synthesis but caused a transient increase in c-fos mRNA levels and stimulated IGF-I induced DNA synthesis and cell proliferation. By contrast, ET-1 inhibited the stimulatory effects of TSH actions on DNA synthesis, cell proliferation and c-AMP production. 8-Bromo-cAMP-induced DNA synthesis was also inhibited by ET-1, suggesting that ET-1 exerts its inhibitory effects at step(s) involving cAMP production and post cAMP pathway. ET-1-induced suppression of TSH actions were reversed by a C-kinase inhibitor, H-7. These results suggest that the effect of ET on functions of FRTL5 cells is, at least, in part mediated by C-kinase dependent pathway.  相似文献   

14.
A rat thyroid peroxidase cDNA has been isolated from a FRTL-5 thyroid cell library and sequenced. The cDNA is 2776 base pairs long with an open reading frame of 770 amino acids. By comparison to full-length human thyroid peroxidase cDNA and based on its identification of a 3.2 kilobase mRNA in rat thyroid FRTL-5 cell Northern blots, the rat peroxidase cDNA appears to lack 400-500 base pairs at the 5'-end of the mRNA. It exhibits only a 74% nucleotide and 77% amino acid sequence similarity to human thyroid peroxidase cDNA within the total aligned sequences, although the predicted active site regions are highly conserved (greater than 90-100%). The cDNA has been used to map the thyroid peroxidase gene in mice to chromosome 12 and to compare thyroid peroxidase and thyroglobulin gene expression in FRTL-5 rat thyroid cells. Despite the fact TSH action in both cases is duplicated, and presumably mediated, by cAMP, TSH-induced increases in thyroid peroxidase and thyroglobulin mRNA levels differ. Differences exist with respect to hormone concentration and time. The ability of TSH to increase thyroglobulin, but not thyroid peroxidase mRNA levels, requires insulin, 5% serum, or insulin-like growth factor-I. Insulin or insulin-like growth factor-I alone can increase thyroglobulin mRNA levels as well as or better than TSH but have only a small effect on thyroid peroxidase mRNA levels by comparison to TSH. The ability of TSH to increase thyroglobulin gene expression is readily detected in nuclear run-on assays but not the ability of TSH to increase thyroid peroxidase gene expression. Cycloheximide inhibits TSH-increased thyroglobulin but not peroxidase mRNA levels. Finally, methimazole and phorbol 12-myristate 13-acetate show different effects on TSH-induced increases in thyroglobulin and thyroid peroxidase mRNA levels.  相似文献   

15.
16.
Cultured dog thyroid cells were used to investigate the mechanism by which previous exposure to thyrotropin (TSH) induces refractoriness to further TSH stimulation of cellular adenosine 3'-5'-monophosphate (cAMP). Refractoriness of the cAMP response to TSH could not be overcome by exposure of the cells to supramaximal stimulatory concentrations of TSH. Although an unknown factor present in human and fetal calf serum was found to inhibit the thyroid cell cAMP response to TSH, this factor could not account for refractoriness because refractoriness could be induced in the absence of serum. Induction of thyroid refractoriness did not appear to be related to cellular concentrations of cyclic AMP, because equal refractoriness was produced by TSH alone or TSH plus the phosphodiesterase inhibitor, 3-isobutyl-1-methyl xanthine. In addition, preincubation of thyroid cells in 10(-4) M cAMP did not result in subsequent refractoriness. Recovery from the refractory process required almost 24 h. Short term (15 min) stimulation with TSH did not produce thyroid cell refractoriness, and reversal of the stimulation was obtained by thorough washing of the cells. Long term TSH stimulation (16 h), however, resulted in both supramaximal cAMP response to TSH, and inclusion of TSH together with cycloheximide did not produce refractoriness. Cyclic AMP phosphodiesterase activity in thyroid cell homogenate was unaltered by TSH or dibutyryl cyclic AMP pretreatment of the cells for up to 24 h, or cycloheximide for up to 4 h. In contrast, TSH-stimulated, but not F--stimulated, adenylate cyclase activity was reduced in thyroid cell homogenates after preincubation of the cells in TSH. Refractoriness to TSH stimulation was not associated with an alteration in the binding of 125I-TSH to cultured thyroid cells. These studies suggest that the thyroid cAMP response to TSH is modulated by an inhibitory mechanism dependent upon new protein synthesis. TSH stimulation itself increases the degree of this inhibition through a mechanism not involving cAMP.  相似文献   

17.
The present report shows that thyrotropin (TSH) regulates all three steps involved in prostaglandin synthesis in FRTL-5 rat thyroid cells, i.e. arachidonic acid release from membrane phospholipids, cyclooxygenase (prostaglandin H synthase) action, and individual prostaglandin formation; however, its action at specific steps may require the presence of, or can be duplicated by, insulin, insulin-like growth factor-I (IGF-I), and/or a serum factor. Thus, TSH releases free arachidonic acid from rat FRTL-5 thyroid cells whose phospholipid fraction is radiolabeled with [3H]arachidonic acid; this action involves a pertussis toxin-sensitive G protein, is not cAMP mediated, and does not require insulin or 5% serum. To quantitate TSH effects on cyclooxygenase activity and on individual prostaglandin formation, a homogenate system and a rapid reversed-phase high pressure liquid chromatography procedure have been developed to measure cyclooxygenase metabolites. TSH increased cyclooxygenase activity in homogenates only if the cells were also exposed to insulin, IGF-I, and/or 5% calf serum; TSH alone had no apparent effect on the activity. Maximal activation, 4-fold over basal/micrograms of DNA, took 36 h to achieve and reflected, at least in part, an increase in cyclooxygenase gene expression. Like cyclooxygenase activity, induction of prostaglandin E2 production required 2 or more factors, i.e. TSH plus insulin/IGF-I or TSH plus insulin/IGF-I plus serum. Increased production of prostaglandin D2, could, however, be detected if cells were treated with TSH alone and the TSH activity could be duplicated by insulin, IGF-I, or calf serum alone.  相似文献   

18.
The presence of 50 mM nicotinamide together with 100 milliunits/ml of TSH in the incubation medium prevented the decline in human thyroid cell cAMP from maximum, stimulated levels (15-30 min) that occurs when the cells are exposed to TSH alone. Nicotinamide in the absence of TSH did not increase thyroid cell cAMP content. TSH desensitization, and its prevention by nicotinamide, occurred in the presence or absence of 3-isobutyl-methylxanthine. 1-Methyl nicotinamide and N'-methyl nicotinamide similarly prevented TSH desensitization. Recovery from TSH desensitization was prolonged and incomplete after 72 h. The presence of 50 mM nicotinamide hastened recovery from desensitization. Desensitization of the cAMP response to 10(6) M prostaglandin E1 and 1 mM adenosine was unaffected by nicotinamide. Other inhibitors of poly(ADP-ribose) polymerase activity, 5-bromouridine, 5-bromo-2'-deoxyuridine, and thymidine (all at 50 mM) completely or partially prevented TSH desensitization. Pyridoxine (50 mM) similarly prevented this phenomenon. As with dog thyroid cells, 10(-4) M cycloheximide blocked TSH desensitization. The combination of 10(-4) M cycloheximide and 50 mM nicotinamide had a synergistic effect in augmenting the thyroid cell cAMP response to TSH stimulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号