首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We have recently shown that a peptide (residues 35–47) from a functional region of the ras p21 protein, thought to be involved in the binding of p21 to GTPase activating protein, the antibiotic azatyrosine, known to induce the ras-recision gene, and the selective protein kinase C inhibitor, CGP 41 251, all inhibit oncogenic p21 protein-induced maturation of oocytes in a dose-dependent manner. We now show that these three agents only partially inhibit insulin-induced oocyte maturation, known to be dependent on activation of cellular p21 protein. On the other hand, the anti-p21 protein antibody Y13–259 completely inhibits both insulin- and oncogenic p21 protein-induced maturation as does a tetrapeptide, CVIM, known to block the enzyme farnesyl transferase which covalently attaches the farnesyl moiety to the p21 protein allowing it to attach to the cell membrane. Our results suggest that while the oncogenic and insulin-activated normal p21 proteins share certain elements of their signal transduction pathways in common, these pathways diverge and allow for selective inhibition of the oncogenic pathway.  相似文献   

2.
We have previously found that the protein kinase C (PKC) inhibitor, CGP 41 251, blocks oncogenic ras-p21 protein- and beta-PKC-induced oocyte maturation, but only weakly inhibits insulin-induced oocyte maturation (which requires activation of wild-type endogenous ras-p21). Because the dose-response curves for inhibition of oncogenic p21- and beta-PKC-induced oocyte maturation by CGP 41 251 superimpose and because the ras-p21-inactivating antibody, Y13-259, does not inhibit beta-PKC-induced oocyte maturation, we concluded that the oncogenic, but not wild-type, protein requires beta-PKC as a downstream target. Because multiple isoforms of PKC exist and several of these, such as epsilon-PKC, have been found to be important on ras signal transduction pathways, we have investigated which PKC isoforms are critical to each ras protein. For this purpose, we used PKC-isoform-specific inhibitors, which have been shown to inhibit selectively the function and translocation of PKC isoforms in vitro and in vivo. Specifically, the peptides KLFIMN, QEVIRN, and EAVSLKPT each inhibit beta-1, beta-2, and epsilon-PKC, respectively, but do not cross-inhibit other PKC isoforms. We find that the epsilon-PKC inhibitory peptide strongly blocks insulin- but not oncogenic ras-p21-induced oocyte maturation whereas the beta-2 inhibitory peptide more strongly inhibits oncogenic ras-p21-induced oocyte maturation, corroborating our previous studies. The beta-1 inhibitory peptide has little effect on either protein. We conclude that selective inhibition of individual PKC isoforms permits the distinction between signal transduction initiated by oncogenic and activated wild-type p21 proteins and implicate different specific PKC isoforms in mitogenic signal transduction by each of these proteins. The ability to dissect the role of individual PKC isozymes in this regulation is of therapeutic significance.  相似文献   

3.
In the preceding paper we performed molecular dynamics calculations of the average structures of the SOS protein bound to wild-type and oncogenic ras–p21. Based on these calculations, we have identified four major domains of the SOS protein, consisting of residues 631–641, 676–691, 718–729, and 994–1004, which differ in structure between the two complexes. We have now microinjected synthetic peptides corresponding to each of these domains into Xenopus laevis oocytes either together with oncogenic (Val 12)-p21 or into oocytes subsequently incubated with insulin. We find that the first three peptides inhibit both oncogenic and wild-type p21-induced oocyte maturation, while the last peptide much more strongly inhibits oncogenic p21 protein-induced oocyte maturation. These results suggest that each identified SOS region is involved in ras–stimulated signal transduction and that the 994–1004 domain is involved uniquely with oncogenic ras–p21 signaling.  相似文献   

4.
In the preceding paper we performed molecular dynamics calculations of the average structures of the SOS protein bound to wild-type and oncogenic ras–p21. Based on these calculations, we have identified four major domains of the SOS protein, consisting of residues 631–641, 676–691, 718–729, and 994–1004, which differ in structure between the two complexes. We have now microinjected synthetic peptides corresponding to each of these domains into Xenopus laevis oocytes either together with oncogenic (Val 12)-p21 or into oocytes subsequently incubated with insulin. We find that the first three peptides inhibit both oncogenic and wild-type p21-induced oocyte maturation, while the last peptide much more strongly inhibits oncogenic p21 protein-induced oocyte maturation. These results suggest that each identified SOS region is involved in ras–stimulated signal transduction and that the 994–1004 domain is involved uniquely with oncogenic ras–p21 signaling.  相似文献   

5.
The ras-oncogene-encoded p21 protein is known to produce malignant transformation of NIH 3T3 cells as well as maturation of Xenopus oocytes when microinjected into these cells. p21 protein is known to bind a GTPase activating protein (GAP) intracellularly; residues 32-45 have been implicated in interacting with GAP. We demonstrate here that a peptide corresponding to residues 35-47 of p21 as well as the antibiotic azatyrosine inhibit the ras-induced maturation of Xenopus oocytes in a dose-related manner upon microinjection. We have previously shown that this p21 peptide and azatyrosine could inhibit the effects of p21 protein on cell transformation and pinocytosis in NIH 3T3 cells. In the present study, in which we have extended these results to the oocyte system, we also demonstrate that both partially inhibit insulin-induced oocyte maturation, a process which is thought to involve activation of endogenous p21 protein; on the other hand, both agents fail to inhibit oocyte maturation induced by progesterone, which is known not to act through p21 protein activation. Control studies with other peptides and tyrosine analogues support the selective nature of these events. These results suggest that both the p21-related peptide and azatyrosine have potent anti-ras effects intracellularly.  相似文献   

6.
In previous studies, involving molecular modeling of wild-type and oncogenic forms of the ras-p21 protein bound to GTPase activating protein GAP and the ras-specific guanine nucleotide exchange-promoting protein, SOS, we identified specific domains of GAP and SOS proteins that differ in conformation when the computed average structures of the corresponding wild-type and oncogenic complexes are superimposed. Additionally, in these previous studies, we have synthesized peptides corresponding to these domains and found that all of them inhibit either or both oncogenic (Val 12-containing) p21- and insulin-activated wild-type p21-induced oocyte maturation. To document further the specificity of the inhibition of these peptides for the ras signal transduction pathway, we have now tested their effects on progesterone-induced maturation that occurs by a ras-independent pathway. None of these peptides, including a peptide corresponding to residues 980–989 of SOS that completely blocks oncogenic p21-induced maturation and also causes extensive inhibition of insulin-induced maturation, affects progesterone-induced maturation, suggesting that all of these peptides are specific for the ras pathway. Since our approach to the design of peptides that can inhibit oncogenic ras-p21 selectively is based on identifying domains that differ in conformation between oncogenic and wild-type complexes, we have now further synthesized peptides that correspond to domains of GAP (residues 903–910) and SOS (residues 792–804) that do not differ in conformation when the average structures are superimposed. These peptides do not inhibit either oncogenic p21- or insulin-induced oocyte maturation, supporting the overall strategy of using peptides from domains that change conformation as the ones most likely to inhibit oncogenic and/or wild-type ras-p21. These results further support the specificity of inhibition of the GAP and SOS peptides from the conformationally distinct domains of both proteins.  相似文献   

7.
Oncogenic ras (Val 12-containing)-p21 protein induces oocyte maturation by a pathway that is blocked by peptides from effector domains of ras-p21, i.e., residues 35-47 (that block Val 12-p21-activated raf) and 96-110 and 115-126, which do not affect the ability of insulin-activated cellular p21 to induce maturation. Oncogenic p21 binds directly to jun-N-terminal kinase (JNK), which is blocked by the p21 96-110 and 115-126 peptides. This finding predicts that oncogenic p21, but not insulin, induces maturation by early and sustained activation of JNK. We now directly confirm this prediction by showing that oncogenic p21 induces activating phosphorylation of JNK (JNK-P) and of ERK (MAP kinase) (MAPK-P), whose levels correlate with oocyte maturation. p21 peptides 35-47 and 96-110 block formation of JNK-P and MAPK-P, further confirming this correlation and suggesting, unexpectedly, that raf-MEK-MAPK and JNK-jun pathways strongly interact on the oncogenic p21 pathway. In contrast, insulin activates only low levels of JNK-P, and, surprisingly, we find that insulin induces only low levels of MAPK-P, indicating that insulin and activated normal p21 utilize MAP kinase-independent signal transduction pathways.  相似文献   

8.
In the accompanying article, using molecular dynamics calculations, we found that the 66–77 and 122–138 domains in ras-p21 and the 821–827, 832–845, 917–924, 943–953, and 1003–1020 domains in GAP have different conformations in complexes of GAP with wild-type and oncogenic ras-p21. We have now synthesized peptides corresponding to each of these domains and coinjected them into oocytes with oncogenic p21, which induces oocyte maturation, or injected them into oocytes incubated with insulin that induces maturation by activating wild-type cellular ras-p21. We find that all of these peptides inhibit both agents but do not inhibit progesterone-induced maturation that occurs by a ras-independent pathway. The p21 66–77 and 122–138 peptides cause greater inhibition of oncogenic p21. On the other hand, the GAP 832–845 and 1003–1021 peptides inhibit insulin-induced maturation to a significantly greater extent. Since we have found that activated wild-type and oncogenic p21 activate downstream targets like raf differently, these GAP peptides may be useful probes for identifying elements unique to the wild-type ras-p21 pathway.  相似文献   

9.
In the preceding paper we found from molecular dynamics calculations that the structure of the ras-binding domain (RBD) of raf changes predominantly in three regions depending upon whether it binds to ras-p21 protein or to its inhibitor protein, rap-1A. These three regions of the RBD involve residues from the protein–protein interaction interface, e.g., between residues 60 and 72, residues 97–110, and 111–121. Since the rap-1A–RBD complex is inactive, these three regions are implicated in ras-p21-induced activation of raf. We have therefore co-microinjected peptides corresponding to these three regions, 62–76, 97–110, and 111–121, into oocytes with oncogenic p21 and microinjected them into oocytes incubated in in insulin, which activates normal p2l. All three peptides, but not a control peptide, strongly inhibit both oncogenic p21- and insulin-induced oocyte maturation. These findings corroborate our conclusions from the theoretical results that these three regions constitute raf effector domains. Since the 97–110 peptide is the strongest inhibitor of oncogenic p21, while the 111–121 peptide is the strongest inhibitor of insulin-induced oocyte maturation, the possibility exists that oncogenic and activated normal p21 proteins interact differently with the RBD of raf.  相似文献   

10.
In the preceding paper we found from molecular dynamics calculations that the structure of the ras-binding domain (RBD) of raf changes predominantly in three regions depending upon whether it binds to ras-p21 protein or to its inhibitor protein, rap-1A. These three regions of the RBD involve residues from the protein–protein interaction interface, e.g., between residues 60 and 72, residues 97–110, and 111–121. Since the rap-1A–RBD complex is inactive, these three regions are implicated in ras-p21-induced activation of raf. We have therefore co-microinjected peptides corresponding to these three regions, 62–76, 97–110, and 111–121, into oocytes with oncogenic p21 and microinjected them into oocytes incubated in in insulin, which activates normal p2l. All three peptides, but not a control peptide, strongly inhibit both oncogenic p21- and insulin-induced oocyte maturation. These findings corroborate our conclusions from the theoretical results that these three regions constitute raf effector domains. Since the 97–110 peptide is the strongest inhibitor of oncogenic p21, while the 111–121 peptide is the strongest inhibitor of insulin-induced oocyte maturation, the possibility exists that oncogenic and activated normal p21 proteins interact differently with the RBD of raf.  相似文献   

11.
We report the identification, purification, and characterization of a farnesyl:protein transferase that transfers the farnesyl moiety from farnesyl pyrophosphate to a cysteine in p21ras proteins. The enzyme was purified approximately 60,000-fold from rat brain cytosol through use of a chromatography step based on the enzyme's ability to bind to a hexapeptide containing the consensus sequence (Cys-AAX) for farnesylation. The purified enzyme migrated on gel filtration chromatography with an apparent molecular weight of 70,000-100,000. High resolution SDS-polyacrylamide gels showed two closely spaced approximately 50 kd protein bands in the final preparation. The enzyme was inhibited competitively by peptides as short as 4 residues that contained the Cys-AAX motif. These peptides acted as alternative substrates that competed with p21H-ras for farnesylation. Effective peptides included the COOH-terminal sequences of all known p21ras proteins as well as those of lamin A and B.  相似文献   

12.
In the accompanying paper, we found, using molecular dynamics calculations, four domains of the ras-specific SOS guanine nucleotide exchange protein (residues 589-601, 654-675, 746-761, and 980-989) that differ markedly in conformation when SOS is complexed with either oncogenic (Val 12-) ras-p21 or wild-type ras-p21. Three of these domains contain three crystallographically undefined loops that we modeled in these calculations, and one is a newly identified non-loop domain containing SOS residues 980-989. We have now synthesized peptides corresponding to these four domains and find that all of them block Val 12-ras-p21-induced oocyte maturation. All of them also block insulin-induced oocyte maturation, but two of these peptides, corresponding to SOS residues 589-601 and 980-989, block oncogenic ras to a significantly greater extent. These results suggest that SOS contains domains, including the three loop domains, that are important for ras signaling and that several of these domains can activate different pathways specific to oncogenic or wild-type ras-p21.  相似文献   

13.
We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.  相似文献   

14.
Microinjection of transforming p21 ras protein induces maturation of Xenopus laevis oocytes, and the induction is blocked by coinjection of monoclonal antibody (Y13-259) against p21 ras proteins. Similar to other inducing agents, the effect of p21 ras protein is mediated via the appearance of maturation or meiosis-promoting factor activity. In addition, the neutralizing antibody markedly reduces oocyte maturation after insulin induction, whereas it fails to inhibit progesterone induction. Our results suggest that insulin induces maturation of oocytes via a different pathway than that of steroidal agents. The induction by insulin is ras dependent, and the action of ras may be directed at the steps before meiosis-promoting factor autocatalytic activation. These results suggest a role of p21 ras protein in the events associated with amphibian oocyte maturation.  相似文献   

15.
Molecular dynamics calculations have been performed to determine the average structures ofras-gene-encoded p21 proteins bound to GTP, i.e., the normal (wild-type) protein and two oncogenic forms of this protein, the Val 12- and Leu 61-p21 proteins. We find that the average structures for all of these proteins exhibit low coordinate fluctuations (which are highest for the normal protein), indicating convergence to specific structures. From previous dynamics calculations of the average structures of these proteins bound to GDP, major regional differences were found among these proteins (Monacoet al. (1995),J. Protein Chem., in press). We now find that the average structures of the oncogenic proteins are more similar to one another when the proteins are bound to GTP than when they are bound to GDP (Monacoet al. (1995),J. Protein Chem., in press). However, they still differ in structureat specific amino acid residues rather than in whole regions, in contradistinction to the results found for the p21-GDP complexes. Two exceptions are the regions 25–32, in anα-helical region, and 97–110. The two oncogenic (Val 12- and Leu 61-) proteins have similar structures which differ significantly in the region of residues 97–110. This region has recently been identified as being critical in the interaction of p21 with kinase target proteins. The differences in structure between the oncogenic proteins suggest the existence of more than one oncogenic form of the p21 protein that can activate different signaling pathways.  相似文献   

16.
Mutational analysis of p21ras has shown that plasma membrane targeting requires the combination of a CAAX motif with a polybasic domain of six lysine residues or a nearby palmitoylation site. However, it is not known from these studies whether these signals alone target p21ras to the plasma membrane. We now show that these C-terminal sequences are sufficient to target a heterologous cytosolic protein to the plasma membrane. Interestingly, the key feature of the p21K-ras(B) polybasic domain appears to be a positive charge, since a polyarginine domain can function as a plasma membrane targeting motif in conjunction with the CAAX box and p21K-ras(B) with the polylysine domain replaced by arginines is biologically active. Since some ras-related proteins are modified by geranylgeranyl rather than farnesyl we have investigated whether modification of p21ras with geranylgeranyl affects its subcellular localization. Geranylgeranyl can substitute for farnesyl in combining with a polybasic domain to target p21K-ras(B) to the plasma membrane, but such geranylgeranylated proteins are more tightly bound to the membrane. This increased avidity of binding is presumably due to the extra length of the geranylgeranyl alkyl chain.  相似文献   

17.
We have previously found that a ras switch 1 domain peptide (PNC-7, residues 35–47) selectively blocks oocyte maturation induced by oncogenic (Val 12–containing) ras-p21 protein and also blocks c-raf–induced oocyte maturation. We now find that oncogenic ras-p21 does not inhibit oocyte maturation of a constitutively activated raf protein (raf BXB) that is lacking most of the first 301 amino terminal amino acids, including the major ras binding domain and accessory ras-binding regions. We also find that a dominant negative raf that completely blocks c-raf–induced maturation likewise does not block raf-BXB–induced maturation. We conclude that PNC-7 blocks ras by binding to the amino-terminal domain of raf and that raf BXB must initiate signal transduction in the cytosol.  相似文献   

18.
To examine signal transduction events activated by oncogenic p21ras, we have studied kinases that are activated following the scrape loading of p21ras into quiescent cells. We observe rapid activation of 42 kDa and 46 kDa protein kinases. The 42 kDa kinase is the mitogen and extracellular-signal regulated kinase ERK2, (MAP2 kinase), which is activated by phosphorylation on tyrosine and threonine in response to oncogenic p21ras, while the 46 kDa kinase is likely to be another member of the ERK family. Stimulation of these kinases by oncogenic p21ras does not require the presence of growth factors, showing that oncogenic p21ras uncouples kinase activation from external signals. In ras transformed cell lines, these kinases are constitutively activated. We propose that the kinases are important components of the signal transduction pathway activated by p21ras oncoprotein.  相似文献   

19.
Microinjection of the activated ras oncogenic protein can induce the meiotic maturation of Xenopus laevis oocytes, a process that can also be triggered by progesterone or high concentrations of insulin. Cycloheximide and puromycin, well-known inhibitors of protein synthesis, block the maturation process induced by progesterone and insulin but do not affect the maturation caused by H-raslys12 protein microinjection. Theophylline, an inhibitor of cAMP phosphodiesterase that also affects oocyte protein synthesis, does cause a partial inhibition of ras protein-induced maturation. These findings indicate that ras protein acts on the oocyte maturation process at a point that is downstream of the protein synthesis requirement, a characteristic shared with the maturation promoting factor, an activity that appears in oocytes and mitotic cells at the onset of cell division.  相似文献   

20.
We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号