首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primaquine has been used to treat Chagas' disease in humans and has been reported to be active against extracellular Trypanosoma cruzi. Experiments were designed to evaluate the relative activity of primaquine against extra- and intracellular T. cruzi and to determine if primaquine might be combined advantageously with ketoconazole. Primaquine at 0.5 micrograms/ml significantly inhibited T. cruzi replication in infected mouse peritoneal macrophages and also effectively treated infected L929 cells. To examine the effect of primaquine on extracellular organisms, tissue culture T. cruzi were incubated with primaquine for different periods of time and then used to infect macrophages. Incubation with 10 micrograms/ml for 14 hr but not 8 hr significantly inhibited but did not eradicate replication. Incubation of spleen amastigotes or blood trypomastigotes for 2 hr with 10 micrograms/ml did not inhibit replication. Incubation of extracellular tissue culture T. cruzi with primaquine for 2 hr did not potentiate the activity of ketoconazole against intracellular organisms. The combination of primaquine and ketoconazole administered to acutely infected mice significantly decreased parasitemias in comparison to treatment with primaquine or ketoconazole alone. Thus primaquine acts primarily on intracellular rather than extracellular T. cruzi. Primaquine and ketoconazole appear to have additive activity in vivo.  相似文献   

2.
High resolution (31)P nuclear magnetic resonance spectra at 303.6 MHz (corresponding to a (1)H resonance frequency of 750 MHz) have been obtained of perchloric acid extracts of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, the causative agents of African sleeping sickness, Chagas' disease, and leishmaniasis. Essentially complete assignments have been made based on chemical shifts and by direct addition of authentic reference compounds. The results indicate the presence of high levels of short chain condensed polyphosphates: di-, tri-, tetra-, and pentapolyphosphate. (31)P NMR spectra of purified T. brucei, T. cruzi, and L. major acidocalcisomes, calcium and phosphorus storage organelles, indicate that polyphosphates are abundant in these organelles and have an average chain length of 3.11-3.39 phosphates. In the context of the recent discovery of several pyrophosphate-utilizing enzymes in trypanosomatids, the presence of these inorganic polyphosphates implies a critical role for these molecules in these parasites and a potential new route to chemotherapy.  相似文献   

3.
Soluble antigens from epimastigotes of Trypanosoma cruzi were analyzed by western blot in terms of their reactivity with sera from patients with Chagas' disease. In addition, sera from patients with visceral (AVL) and tegumental leishmaniasis (ATL) were also tested in order to identify cross-reactivities with Trypanosoma cruzi antigens. Twenty eight polypeptides with molecular weights ranging from 14 kDa to 113 kDa were identified with sera from Chagas' disease patients. An extensive cross-reactivity was observed when sera from human visceral leishmaniasis were used, while only a slight cross-reaction was observed with sera from tegumental leishmaniasis. On the other hand, 10 polypeptides specifically reacting with sera from Chagas' disease patients were identified. Among them, the antigens with molecular weights of 46 kDa and 25 kDa reacted with all sera tested and may be good candidates for specific immunodiagnosis of Chagas' disease.  相似文献   

4.
Trypanosoma cruzi is the etiologic agent of Chagas' disease, a parasitic disease of enormous importance in Latin America. Herein we review the studies that revealed the receptors from innate immunity that are involved in the recognition of this protozoan parasite. We showed that the recognition of T. cruzi and its components occurs through Toll-like receptors (TLR) 2/CD14. Further, we showed in vivo the importance of the myeloid differentiation factor (MyD88), an adapter protein essential for the function of TLRs, in determining the parasitemia and mortality rate of mice infected with T. cruzi. We also discuss the implications of these findings in the pathophysiology of Chagas' disease.  相似文献   

5.
Abstract A workshop organized by the Ibero-American Project of Biotechnology evaluated the diagnostic potential of several cloned Trypanosoma cruzi recombinant antigens for Chagas' disease serodiagnosis. A set of recombinants, Antigen 2, Antigen 13, SAPA, H49, A13, JL5, JL7, JL8, JL9, and RA1 provided by three different South American laboratories were probed with a panel of 236 South American serum samples. Antigens JL7, H49, Antigen 2, and A13 scored as the best diagnostic recombinant reagents. The results suggested that the main advantage of using cloned peptides for chronic Chagas' disease diagnosis resided in their highly specific immunoreactive properties.  相似文献   

6.
A workshop organized by the Ibero-American Project of Biotechnology evaluated the diagnostic potential of several cloned Trypanosoma cruzi recombinant antigens for Chagas' disease serodiagnosis. A set of recombinants, Antigen 2, Antigen 13, SAPA, H49, A13, JL5, JL7, JL8, JL9, and RA1 provided by three different South American laboratories were probed with a panel of 236 South American serum samples. Antigens JL7, H49, Antigen 2, and A13 scored as the best diagnostic recombinant reagents. The results suggested that the main advantage of using cloned peptides for chronic Chagas' disease diagnosis resided in their highly specific immunoreactive properties.  相似文献   

7.
Prostaglandins are known to be produced by macrophages when challenged with Trypanosoma cruzi, the etiological agent of Chagas' disease. It is not known whether these lipid mediators play a role in oxidative stress in host defenses against this important protozoan parasite. In this study, we demonstrated that inducible cyclooxygenase-mediated prostaglandin production is a key chemical mediator in the control of parasite burden and erythrocyte oxidative stress during T. cruzi infection in C57BL/6 and BALB/c mice, prototype hosts for the study of resistance and susceptibility in murine Chagas' disease. The results suggested the existence of at least two mechanisms of oxidative stress, dependent or independent with regard to the nitric oxide and cyclooxygenase pathway, where one or the other is more evident depending on the mouse strain.  相似文献   

8.
Abstract Molecular expression cloning techniques have revealed that patients with chronic Chagas' heart disease (cChHD) present a strong humoral response against the cloned C-terminal portions of the four Trypanosoma cruzi ribosomal P proteins TcP1, TcP2α (TcP2b), TcP2β (TcPJL5), and TcP0. This protein family presents several features that may be important in the immunopathology of Chagas disease. Their exposed location on the ribosome, and the amplification of their parasite-specific, Ser free C-terminal domain, generate a strong anti-parasite P response that may induce anti-P autoimmunity. Evidences indicate that the serological pattern of the anti-P response from chagasic patients may be the consequence of a chronic immunization with T. cruzi ribosomal antigens.  相似文献   

9.
Chagas' disease is a zoonosis prevalent in Latin America that is caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas' disease, has been extensively studied but is still poorly understood. In this study, we systematically compared clinical, microbiologic, pathologic, immunologic, and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice; however, most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold greater than C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8(+) T cells and both CD4(+) and CD8(+) subsets of IFN-γ(+)IL-10(+) double-producing T cells. Furthermore, T. cruzi infection of IL-10(-/-) C57BL/6J mice phenocopied fatal infection in wild-type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system, IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis.  相似文献   

10.
High field (31)P nuclear magnetic resonance spectroscopy showed that inorganic pyrophosphate (P(2)O(7)(4-)) is more abundant than ATP in Trypanosoma cruzi, the causative agents of Chagas' disease. These results were confirmed by specific analytical assays, which showed that in epimastigotes, the concentrations of inorganic pyrophosphate and ATP were 194.7 +/- 25.9 and 37.6 +/- 5.5 nmol/mg of protein, respectively, and for the amastigote form, the corresponding concentrations were 358.0 +/- 17.0 and 36.0 +/- 1.9 nmol/mg of protein. High performance liquid chromatographic analysis of perchloric acid extracts of epimastigotes labeled for 3 h with (32)P-orthophosphate showed a significant incorporation of the precursor into inorganic pyrophosphate. Inorganic pyrophosphate was not uniformly distributed in T. cruzi but was shown by (31)P-NMR and chemical analysis to be particularly associated with acidocalcisomes, organelles shown previously to contain large amounts of phosphorus and various elements. Electron microscopy analysis of pyrophosphatase-treated permeabilized epimastigotes showed disappearance of the electron density of the acidocalcisomes. Nonmetabolizable analogs of pyrophosphate, currently used for the treatment of bone resorption disorders, selectively inhibited the proliferation of intracellular T. cruzi amastigotes and produced a profound suppression in the number of circulating trypomastigotes in mice with an acute infection of T. cruzi, offering a potentially new route to chemotherapy.  相似文献   

11.
Adenylate kinases supply energy routes in cellular energetic homeostasis. In this work, we identified and characterized the adenylate kinase activity in extracts from the flagellated parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Adenylate kinase activity was detected in different subcellular fractions and the cytosolic isoform was biochemically characterized. Cytosolic adenylate kinase specific activity increases continuously during the epimastigote growth and is down-regulated when other soluble phosphotransferase, arginine kinase, is overexpressed. Six different genes of adenylate kinase isoforms were identified and the mRNA expression was confirmed by RT-PCR and Northern Blot. Three open reading frames coding for different enzyme isoforms named TzADK1, TzADK2 and TzADK5 were cloned and functionally expressed in E. coli. This work reports an unusually large number of genes of adenylate kinases and suggests a coordinated regulation of phosphotransferase-mediated ATP regenerating pathways in the unicellular parasite Trypanosoma cruzi.  相似文献   

12.
We investigated the involvement of fibronectin (FN) in Trypanosoma cruzi-cardiomyocyte invasion and the extracellular matrix (ECM) components expression during T. cruzi infection in vivo and in vitro. Treatment of trypomastigotes with FN or a synthetic peptide (MRGDS) prior to cardiomyocyte interaction reduced T. cruzi infection, indicating that FN mediates the parasite invasion through its RGD sequence. In murine experimental Chagas' disease, an enhancement of the ECM components was detected in the myocardium during the late acute infection, coinciding with inflammatory infiltrates accumulation. In contrast, highly infected cardiomyocytes displayed a reduction in FN expression in vitro, while laminin spatial distribution was altered. Although it has been demonstrated that cardiomyocytes are able to synthesize cytokines upon T. cruzi infection, our data suggest that matrix remodeling is dependent on cytokines secreted by inflammatory cells recruited in immune response.  相似文献   

13.
Free radical metabolism of antiparasitic agents   总被引:2,自引:0,他引:2  
In recent years it has been apparent that many of the known antiparasitic drugs produce free radicals. Intracellular reduction followed by autooxidation yielding O.-2 and H2O2 has been suggested as the mode of action of nifurtimox on Trypanosoma cruzi and as the basis of its toxicity in mammals. On the other hand, free radical intermediates that do not generate oxygen-reduction products under physiological conditions have been found in the metabolic pathways of other antiparasitic nitro compounds (benznidazole, metronidazole, and other 5-nitroimidazoles) used in the treatment of diseases such as Chagas' disease, trichomoniasis, giardiasis, balantidiasis, amebiasis, and schistosomiasis. In these cases, as well as in the case of niridazole (used in the treatment of schistosomiasis), covalent binding or other interactions of the intermediates of nitroreduction with parasite macromolecules are possibly involved in their toxicity. Redox cycling of these compounds under aerobic conditions appears to be a detoxification reaction by inhibiting net reduction of the drugs.  相似文献   

14.
We studied the capacity of macrophage-derived peroxynitrite to diffuse into and exert cytotoxicity against Trypanosoma cruzi, the causative agent of Chagas' disease. In two types of macrophage-T. cruzi co-cultures, one with a fixed separation distance between source and target cells, and another involving cell-to-cell interactions, peroxynitrite resulted in significant oxidation of intracellular dihydrorhodamine and inhibition of [(3)H]thymidine incorporation in T. cruzi, which were not observed by superoxide or nitric oxide alone. The effects were attenuated in the presence of bicarbonate, in agreement with the extracellular consumption of peroxynitrite by its fast reaction with CO(2). However, studies using different T. cruzi densities, which allow to modify average diffusion distances of exogenously added peroxynitrite to target cells, indicate that at distances <5 microm, the diffusion process outcompetes the reaction with CO(2) and that the levels of peroxynitrite formed by macrophages would be sufficient to cause toxicity to T. cruzi during cell-to-cell contact and/or inside the phagosome.  相似文献   

15.
Trypanosoma cruzi, the causative agent of Chagas' disease, replicates in mammalian cells and relies on the de novo pyrimidine biosynthetic pathway that supplies essential precursors for nucleic acid synthesis. The protozoan dihydroorotate dehydrogenase (DHOD), the fourth enzyme of the pathway catalyzing production of orotate from dihydroorotate, markedly differs from the human enzyme. This study was thus aimed to search for potent inhibitors against T. cruzi DHOD activity, and a number of methanol extracts prepared from green, brown, and red algae were assayed. The extracts from two brown algae, Fucus evanescens and Pelvetia babingtonii, yielded 59 and 58% decrease in the recombinant DHOD activity, respectively, at the concentration of 50 microg/ml. Inhibition by these extracts was noncompetitive with respect to dihydroorotate, with apparent Ki values of 35.3+/-5.9 and 10.3+/-4.4 microg/ml, respectively. Further, in an in vitro T. cruzi-HeLa cell infection system, ethanol-reconstituted F. evanescens and P. babingtonii extracts at the concentration of 1 microg/ml, respectively, decreased significantly the infection rate of host cells and the average parasite number per infected cell. These results imply that F. evanescens and P. babingtonii contain inhibitor(s) against the T. cruzi DHOD activity and against the protozoan infection and proliferation in mammalian cells. Identification of inhibitor(s) in these two brown algae and further screening of other marine algae may facilitate the discovery of new, anti-trypanosomal lead compounds.  相似文献   

16.
The enzyme NADH-fumarate reductase is not found in mammalian cells but it is present in several parasitic protozoa including Trypanosoma cruzi, the parasite that causes Chagas' disease. This study shows that the drug 2-mercaptopyridine-N-oxide (MPNO) inhibits NADH-fumarate reductase purified from T. cruzi (ID50 = 35 microM). When added to intact cells, MPNO inhibited the growth of T. cruzi epimastigotes in culture (ID50 = 0.08 microM) as well as the infection of mammalian myoblasts by T. cruzi trypomastigotes (ID50 = 20 microM). At a concentration of 2.4 microM, MPNO also inhibited the growth of amastigotes (intracellular dividing forms) in cultured mammalian myoblasts. Supplementation of culture media with 5 mM succinate, the product of fumarate reductase, partially protected against the inhibition of the growth of epimastigotes by MPNO. Moreover, MPNO inhibited the accumulation of succinate in cultures of epimastigotes, as measured by high performance liquid chromatography. Although MPNO may have other intracellular targets in addition to fumarate reductase, these results support the hypothesis that compounds which inhibit the enzyme fumarate reductase may be potential chemotherapeutic agents against Chagas' disease.  相似文献   

17.
Leishmaniasis and Chagas' are parasitic protozoan diseases that affect the poorest population in the world, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, novel, safe and more efficacious drugs are essential. In this work, the CH(2)Cl(2) phase from MeOH extract from the leaves of Baccharis retusa DC. (Asteraceae) was fractioned to afford two flavonoids: naringenin (1) and sakuranetin (2). These compounds were in vitro tested against Leishmania spp. promastigotes and amastigotes and Trypanosoma cruzi trypomastigotes and amastigotes. Compound 2 presented activity against Leishmania (L.) amazonensis, Leishmania (V.) braziliensis, Leishmania (L.) major, and Leishmania (L.) chagasi with IC(50) values in the range between 43 and 52 μg/mL and against T. cruzi trypomastigotes (IC(50)=20.17 μg/mL). Despite of the chemical similarity, compound 1 did not show antiparasitic activity. Additionally, compound 2 was subjected to a methylation procedure to give sakuranetin-4'-methyl ether (3), which resulted in an inactive compound against both Leishmania spp. and T. cruzi. The obtained results indicated that the presence of one hydroxyl group at C-4' associated to one methoxyl group at C-7 is important to the antiparasitic activity. Further drug design studies aiming derivatives could be a promising tool for the development of new therapeutic agents for Leishmaniasis and Chagas' disease.  相似文献   

18.
Trypanosoma cruzi is the causative agent of Chagas' disease. Novel chemotherapy with the drug K11777 targets the major cysteine protease cruzain and disrupts amastigote intracellular development. Nevertheless, the biological role of the protease in infection and pathogenesis remains unclear as cruzain gene knockout failed due to genetic redundancy. A role for the T. cruzi cysteine protease cruzain in immune evasion was elucidated in a comparative study of parental wild type- and cruzain-deficient parasites. Wild type T. cruzi did not activate host macrophages during early infection (<60 min) and no increase in ~P iκB was detected. The signaling factor NF-κB P65 colocalized with cruzain on the cell surface of intracellular wild type parasites, and was proteolytically cleaved. No significant IL-12 expression occurred in macrophages infected with wild type T. cruzi and treated with LPS and BFA, confirming impairment of macrophage activation pathways. In contrast, cruzain-deficient parasites induced macrophage activation, detectable iκB phosphorylation, and nuclear NF-κB P65 localization. These parasites were unable to develop intracellularly and survive within macrophages. IL 12 expression levels in macrophages infected with cruzain-deficient T. cruzi were comparable to LPS activated controls. Thus cruzain hinders macrophage activation during the early (<60 min) stages of infection, by interruption of the NF-κB P65 mediated signaling pathway. These early events allow T. cruzi survival and replication, and may lead to the spread of infection in acute Chagas' disease.  相似文献   

19.
Herein we detail the first glycoproteomic analysis of a human pathogen. We describe an approach that enables the identification of organelle and cell surface N-linked glycoproteins from Trypanosoma cruzi, the causative agent of Chagas' disease. This approach is based on a subcellular fractionation protocol to produce fractions enriched in either organelle or plasma membrane/cytoplasmic proteins. Through lectin affinity capture of the glycopeptides from each subcellular fraction and stable isotope labeling of the glycan attachment sites with H(2)18O, we unambiguously identified 36 glycosylation sites on 35 glycopeptides which mapped to 29 glycoproteins. We also present the first expression evidence for 11 T. cruzi specific glycoproteins and provide experimental data indicating that the mucin associated surface protein family (MASP) and dispersed gene family (DGF-1) are post-translationally modified by N-linked glycans.  相似文献   

20.
Abstract The detection of Trypanosoma cruzi kinetoplast DNA by polymerase chain reaction (PCR) amplification is a potentially powerful tool for the parasitological diagnosis of Chagas' disease. We have applied this technique in a field situation in Bolivia, where 45 children from a primary school were subjected to serological testing, buffy coat analysis and PCR diagnosis. 26 of the 28 serology-positive individuals were also positive by PCR. In addition, two serology-negative children gave a positive result by PCR, including one who was positive in the buffy coat test. These results suggest that PCR detection of T. cruzi DNA in blood can be a very useful complement to serology in Chagas' disease diagnosis in Bolivia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号