首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A gradostat (multistage chemostat) was used as a model of the rhizosphere. Investigations of the influence of NH4Cl and O2 gradients on a diazotrophic rhizosphere bacterium in pure culture and in mixed culture with non-diazotrophic strains were carried out. The diazotrophic isolate was able to grow on N2 and NH4Cl simultaneously. The diazotrophic isolate could successfully compete with the non-diazotrophic isolates in the presence and absence of NH4Cl in most experiments. Only minor amounts of nitrogen were transferred to the non-fixing organisms. A concept of transfer of nitrogen to non-fixing organisms is proposed.  相似文献   

2.
The effect of nitrogen on excretion and metabolism of glycolate in Anabaena cylindrica (CCAP 1403/2a) was studied. Glycidate, an inhibitor of glutamate:glyoxylate aminotransferase (EC 2.6.1.4), reduced the L-methionine-DL-sulfoximine-induced NH4+ release by ca 40%, while net CO2 fixation and C2H2 reduction were not lowered. This indicates that at least a part of the glyoxylate synthesized in A. cylindrica is metabolized via glycine to serine. Addition of NH4Cl or glutamate to the medium reduced the excretion of glycolate. At pH 9, under air, NH4Cl reduced the excretion by 10–30% and under high pO2 (0.03 kPa CO2 in O2) by about 80–90%. At pH 7.5, under high pO2, NH4Cl and glulamate reduced the excretion by about 40 and 80%, respectively. Also, the presence of NH4Cl stimulated the animation of glyoxylate under such conditions as shown by an increased glycine pool and a decreased glutamate pool. We suggest that nitrogen regulates the capacity of A. cylindrica to retain and recycle glycolate intracellularly and that glutamate serves as an amino donor in the conversion of glyoxylate to glycine.  相似文献   

3.
Abstract The effect of certain nitrogen compounds on nitrogenase activity was studied in cells of Azospirillum brasilense strain Sp6, grown under microaerophilic conditions with nitrogenase fully derepressed. 0.5 mM NH4Cl, 0.5 mM glutamine, 1.0 mM KNO3 and 0.1 mM KNO2 completely blocked nitrogenase activity. 1.0 mM asparagine, 1.0 mM aspartate, 1.0 mM histidine and 1.0 mM adenine did not caused no inhibition of nitrogenase; indeed asparagine, aspartate and histidine showed a slight stimulatory effect on N2 fixation. The addition of 10 mM dl -methionine- dl -sulphoximine prevented the inhibitory effect of NH4Cl and glutamine but did not counteract the effect of KNO2. Rifampicin and chloramphenicol did not prevent the inhibition of nitrogenase by NH4Cl.  相似文献   

4.
We have isolated three cDNA clones that are preferentially expressed in the cement gland of early Xenopus laevis embryos. These clones were used to study processes involved in the induction of this secretory organ. Results obtained show that the induction of this gland coincides with the process of neural induction. Genes specific for the cement gland are expressed very early in the anterior neural plate of stage-12 embryos. This suggests that the anteroposterior polarity of the neural plate is already established during gastrulation. At later stages of development, two of the three genes have secondary sites of expression. The expression of these genes can be induced in isolated animal caps by incubation in 10 mM-NH4Cl, a treatment that is known to induce cement glands.  相似文献   

5.
Abstract Erythromycin formation decreased in Streptomyces erythreus as a function of the ammonium concentration present in the medium. Total inhibition of synthesis was obtained with 100 mM NH4Cl but medium pH and culture growth were not significantly affected. A similar effect was obtained with NH4NO3 or (NH4)2SO4 indicating that ammonium ion probably repressed formation of antibiotic.  相似文献   

6.
To convert animal pole cells of a frog embryo from an ectodermal fate into a neural one, inductive signals are necessary. The alkalizing agent NH4Cl induces the expression of several anterior brain markers and the early pituitary marker XANF-2 in Xenopus animal caps. Here it is demonstrated that NH4Cl also induced proopiomelanocortin (POMC)-expressing cells (the first fully differentiated pituitary cell type) in stage 9 and 10 Xenopus animal caps, and that all-trans retinoic acid, a posteriorizing agent, was able to block this induction when it was administered within 2 h after the start of NH4Cl incubation. Thus, after 2 h, the fate of Xenopus animal cap cells was determined. Microinjection of ribonucleic acid (RNA) encoding noggin, an endogenous neural inducer, led to the induction of POMC gene expression in animal caps of stage 10 embryos, suggesting that noggin represents a candidate mesodermal signal leading to the POMC messenger (m) RNA producing cell type in uncommitted ectoderm. Hence, an alkalizing agent and a neural inducer can generate a fully differentiated POMC cell lineage from Xenopus animal caps.  相似文献   

7.
Cysteine is commonly employed as the medium reductant for ruminal bacteria, but many ruminal bacteria can use cysteine as a source of nitrogen as well as sulfur. The objective of the present study was to test a combination of dithiothreitol and sulfide as possible reductant substitutes for cysteine in anaerobic media containing ammonia as the nitrogen source. The type of reductant (cysteine versus dithiothreitol-sulfide) and ammonia concentration did not alter growth rates of Prevotella ruminicola strain B,4 (P>0.15). However, growth rates in dithiothreitol-sulfide reduced media varied tremendously between individual organisms ranging from 0.10 h−1 for Ruminococcus flavefaciens to 1.6 h−1 for Streptococcus bovis grown in 1 mM NH3-N. At both 1 and 11 mM NH4Cl, Str. bovis strain JB1 exhibited the greatest growth rate followed by Str. bovis strain C277. Megasphaera elsdenii strain T81 and Ruminococcus flavefaciens strain FD1 had the lowest growth rates at both NH4Cl concentrations. Increasing NH4Cl concentration from 1 to 11 mM resulted in increased growth rates for Ruminobacter amylophilus strains H18 and 70 and Str. bovis strain C277 (P<0.05), and decreased growth rates for S. ruminantium subsp. lactilytica strain HD4 and Str. bovis strain JB1 (P<0.01). These results indicate that dithiothreitol and sulfide can be combined as reductants in nitrogen-free basal media for most ruminal bacterial species.  相似文献   

8.
A completely defined growth medium has been developed to determine the nitrogen requirements for several species of ruminal bacteria, and has revealed two strains which are impaired in de novo biosynthesis of certain amino acids. Using NH4Cl as a sole nitrogen source, the medium supported growth of Butyrivibrio, Selenomonas, Prevotella and Streptococcus species. One strain of B. fibrisolvens (E14) and one strain of P. ruminicola (GA33) did not grow in the presence of NH4Cl until the medium was supplemented with amino acids or peptides. For B. fibrisolvens strain E14, methionine was identified as the specific growth-limiting amino acid although methionine alone did not support growth in the absence of NH4Cl. For P. ruminicola strain GA33, any individual amino acid other than methionine or cysteine could supplement the medium and support growth. Enzyme assays confirmed a lack of NADH and NADPH-dependent glutamate dehydrogenase (GDH) activities in this strain.  相似文献   

9.
10.
Ectoderm cells in animal caps from Xenopus embryos develop to form either epidermis or neural tissue depending upon their receipt of intercellular signals. To date, several secreted neural inducers have been identified which act through the local inhibition of bone morphogenetic protein (BMP) signaling, preventing differentiation to epidermis and resulting in adoption of neural fate. In this work, we have exploited an interspecies animal cap assay, which enables detection of the effects of signaling molecules produced by cells of one animal cap and influencing development in a second cap cultured in close apposition in a Holtfreter combination. We show that expression of the T-box protein, Xbra3, in one cap causes the production of a factor, which causes adoption of neural fate by cells of the other animal cap. The action of this factor is not inhibited by the over-expression of BMP in cells of the responding animal cap, or by the inhibition of Wnt signaling. These findings suggest the existence of a secreted signaling molecule that is able to induce ectodermal cells to adopt neural fate by a mechanism independent of the inhibition of the BMP or Wnt signaling pathways.  相似文献   

11.
Abstract— The effect of pathophysiological levels (2-5 m m ) of ammonium chloride on the efflux of endogenous and exogenous [14C]glutamate from hippocampal slices was studied. The evoked release of glutamate which occurs dring tissue depolarization with 56 m m -KCl was greatly reduced when the tissue had been exposed to NH4Cl for 40–80 min. This effect was seen whether or not glutamine (0.5 m m ) was present in the incubation medium. The effect was completely reversible. The spontaneous efflux and the evoked release of [14C]glutamate was, on the contrary, completely unaltered after exposure of the slice to ammonium ions. Nigher (20–36 m m ) amounts of NH4Cl evoked a release of [14C]glutamate from the crude mitochondrial fraction, as did high concentrations of KCl. The results are discussed in relation to the compartmentation of glutamate metabolism and the pathogenesis of hepatic coma.  相似文献   

12.
ABSTRACT. The proteolytic processing and secretion of a lysosomal enzyme, acid α-glucosidase, was studied by pulse-chase labeling with [35S]methionine in Tetrahymena thermophila CU-399 cells treated with ammonium chloride. This cell secreted a large amount of acid α-glucosidase into the cultured medium during starvation. the secretion was found to be repressed by addition of ammonium chloride (NH4Cl). Acid α-glucosidase was produced as a precursor form (108 kDa) and then processed to a mature polypeptide (105 kDa) within 60 min. This mature enzyme was secreted into the media within 2-3 h after chase, whereas the precursor form was not secreted by either control cells or NH4Cl-treated cells. NH4Cl did not affect the processing of the precursor acid α-glucosidase. Processing profile of this enzyme was apparently indistinguishable from that of the mutant MS-1 defective in lysosomal enzyme secretion. Furthermore, the purified extracellular (CU-399) and intracellular (MS-1) acid a-glucosidases were the same in molecular mass (105 kDa) and enzymatic properties. They contained no mannose 6-phosphate residues in N-linked oligosaccharides. These results suggested that unlike mammalian cells, Tetrahymena acid α-glucosidase may be transferred to lysosomes by a mannose 6-phosphate receptor-independent mechanism, and also that low pH was not essential for the proteolytic processing of precursor polypeptide.  相似文献   

13.
Roots and leaves of Zea mays L. cv. Ganga Safed-2 seedlings grown with nutrient solution containing either 10 m M KNO3 or NH4Cl or 5 m M NH4NO3 had considerably higher glutamate synthase (NADH, EC 1.4.1.14) activity than the corresponding organs from seedlings grown without any nitrogen. The supply of inorganic nitrogen for a short time, i.e. 3 h, to roots and leaves excised from seedlings grown without nitrogen also increased the enzyme activity in these organs. This increase was more pronounced with nitrate than with ammonium nitrogen. When excised roots and leaves from NH4NO3-grown seedlings were incubated in a minus nitrogen medium for 24 h, the enzyme activity declined considerably. This decline was inhibited to some extent by nitrogen, especially by nitrate. Inorganic nitrogen prevented similarly the decline in in vitro enzyme activity during 24 h storage at 25°C, more regularly for the root than for the leaf enzyme. The experiments demonstrate the role of inorganic nitrogen in the regulation of glutamate synthase activity.  相似文献   

14.
A survey for the enzyme L-myo-inositol-1-phosphate synthase (EC 5.5.1.4) has been conducted among various members of the lower plant groups, mainly algac, bryophytes and fungi; some properties of the partially purified enzyme from Euglena gracilis Z . are presented. The enzyme was detected in Chloropycean algae, Marchantiales and the Basidiomycetous fungi. The enzyme from Euglena had a pH optimum at 7.5. The Km for glucose-6-P was 2.1 m M and for NAD+ 80 μ M . When assayed in the absence of added NAD+, the enzyme showed a basal activity suggesting the presence of bund NAD+ in the system. NH4Cl increased the enzyme activity two-fold, altough the enzyme was inactivated by (NH4)2SO4.  相似文献   

15.
Abstract Intact filaments of the cyanobacterium Anabaena variabilis switch off nitrogenase activity very rapidly upon addition of NH4Cl when incubated in an alkaline environment (pH 10.0) permitting a fast NH3-influx into the cells. When assayed in cell-free extracts (prepared from ammonia-treated filaments), nitrogenase remains inhibited in the presence of an ATP-regenerating system. Furthermore, l -methionine- d,l -sulfoximine, an inhibitor of glutamine synthetase, added to the filaments, prevents inactivation of nitrogenase by ammonia, showing that ammonia is not the compound directly responsible for nitrogenase switch-off.  相似文献   

16.
Abstract. The activity of the green alga Scenedesmus obliquus was studied in simplified nutrient solutions (20 mol m−3 NaNO3, 20 mol m−3 NH4C1, 20 mol m−3 NH4NO3, and 20 mol m−3 NaCl, respectively) at 25 °C. The experiments were performed under welldefined incident photon density fluxes ranging from 10 to 200 μmol m2 s−1, Light-dependent changes in pH and alkalinity (A) were followed by means of a potentiometric method using a glass electrode. In the experiments, carbon dioxide with known partial pressure was bubbled through the algal suspension, and during dark periods ul intervals of 1 h, the solution was allowed to equilibrate with the gas phase. This technique was applied to calculate equilibrium values of pH and alkalinity at regular intervals during a 12-h period. Results obtained in NaNO3, solution show a linear increase in A with time, at each level of illumination studied. After an initial drop, A also increases in NH4NO3, solution in a similar way to that in NaNO3 solution. The change in A with time was also found to increase linearly with the photon density flux studied and no saturation level could be defined. In experiments in NaCl solution, no changes in A were registered while measurements in NH4Cl solution showed a decrease in A with time.  相似文献   

17.
The photorespiratory nitrogen cycle was initially thought to be a closed cyclic process. If this were true the loss of glutamate, glutamine, serine or glycine to other processes, such as protein synthesis or export from the leaves, would not be possible in a stoichiometric sense. However, recent studies with [15N]-labeled amino acids show that there are alternative sources of nitrogen for photorespiration, indicating that the nitrogen cycle is not a closed cyclic system. In addition recent work with 15NH4Cl and [15N]-glycine and a metabolically competent mitochondria system has shown that glutamate is synthesized in the mitochondria. Hence the glutamate dehydrogenase (GDH, EC 1.4.1.2) in mitochondria could also be active in the reassimilation of NH4. We would like to propose that one function of mitochondrial GDH is to synthesize glutamate from some of the NH4 released by photorespiration and that this glutamate represents a reserve for use in biosynthetic reactions.  相似文献   

18.
Ratios of ammonium (NH4+) to nitrate (NO3) in soils are known to increase during forest succession. Using evidence from several previous studies, we hypothesize that a malfunction in NH4+ transport at the membrane level might limit the persistence of early successional tree species in later seral stages. In those studies, 13N radiotracing was used to determine unidirectional fluxes and pool sizes of NH4+ and NO3 in seedlings of the late-successional species white spruce ( Picea glauca ) and in the early successional species Douglas-fir ( Pseudotsuga menziesii var. glauca ) and trembling aspen ( Populus tremuloides ). At high external NH4+, the two early successional species accumulated excessive NH4+ in the root cytosol, and exhibited high-velocity, low-efficiency (15% to 22%), membrane fluxes of NH4+. In sharp contrast, white spruce had low cytosolic NH4+ accumulation, and lower-velocity but much higher-efficiency (65%), NH4+ fluxes. Because these divergent responses parallel known differences in tolerance and toxicity to NH4+ amongst these species, we propose that they constitute a significant driving force in forest succession, complementing the discrimination against NO3 documented in white spruce (Kronzucker et al. 1997).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号