首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical signals that can be associated with the presence of a host insect often work as arrestants in close range host location by parasitoids, leading to longer searching times on patches where such signals are present. Our current view of parasitoid host location is that by prolonging the search times in patches, randomly searching parasitoids enhance their chance of detecting host insects. However, prolonged search times are not necessarily the only modification in parasitoid behaviour. In this study, we examine the exploitation of host-fruit marking pheromone of rose-hip flies, Rhagoletis basiolaOsten-Sacken (Diptera: Tephritidae) by the specialized egg-larval parasitoid Halticoptera rosae Burks (Hymenoptera: Pteromalidae). We provide evidence that the instantaneous probability that a host egg will be located by a searching parasitoid wasp differs markedly between pheromone-marked and unmarked fruits. The arresting response to the marking pheromone, i.e., the prolonged time a wasp is willing to search on marked fruits, can only account for a small fraction of the difference in successful host location on marked and unmarked fruits. We further demonstrate that the time wasps require to locate the host egg is independent of the size of the rose-hip harbouring the fly egg, and thus is independent of the area the wasp potentially has to search. A comparison of our findings with results of different search algorithms for parasitoid wasps suggests that wasps use the fly's pheromone marking trail as a guide way to the fly's oviposition site and thus the host egg.  相似文献   

2.
Abstract.
  • 1 In nature, interference among Anagrus delicatus (Hymenoptera: Mymaridae) parasitoids reduced the per-capita number of hosts parasitized. Interference increased with parasitoid density.
  • 2 Anagrus delicatus did not avoid parasitizing hosts that had recently been parasitized by conspecific wasps. Evidence indicated that this superparasitism was largely a random process, increasing with the ratio of parasitized to unparasitized hosts.
  • 3 Individual parasitoid efficiency, the number of hosts killed per wasp per unit time, decreased with increasing wasp density. This occurred whether wasps searched the patch together (simultaneously) or one by one (sequentially), and was the result of an increase in time spent superparasitizing hosts at higher wasp density. This is known as indirect mutual interference.
  • 4 Increasing numbers of parasitoids together on the same patch caused a significant decline in the rate and per-capita number of hosts parasitized. However, there was not a correspondent decline in searching efficiency with increasing wasp density (i.e. no direct mutual interference).
  • 5 These forms of parasitoid density dependence should contribute to the stability of the host—parasitoid interaction.
  相似文献   

3.
Treatment of both uninfested and armyworm‐infested maize plants with jasmonic acid (JA) is known to attract the parasitic wasp, Cotesia kariyai Watanabe (Hymenoptera: Braconidae). Here, we show that treatment with a methyl ester of a JA precursor, methyl linolenate (MeLin), also causes maize plants to attract this wasp, yet does not cause elevated levels of endogenous JA. The volatile chemicals emitted from either infested or uninfested maize plants treated with MeLin were qualitatively and quantitatively different from those emitted from JA‐treated plants. Among compounds emitted from MeLin‐treated plants, α‐pinene and menthol attracted wasps in pure form in a two‐choice test using a choice chamber. A mixture of methyl salicylate, α‐copaene, and β‐myrcene also attracted wasps. In contrast, (Z)‐3‐hexenyl acetate was among the main attractants for C. kariyai in JA‐treated plants. These data show that in addition to JA, MeLin also has the potential to increase the host‐finding ability of C. kariyai, but that the composition of attractants they induce differs.  相似文献   

4.
1. Frugivorous and seed‐feeding insects may alter the traits of fruits, such as shape and size, which may influence fruit attractiveness to frugivorous birds. Consequently, trait‐mediated interactions may occur in systems where plants, seed‐dispersing frugivorous vertebrates, and frugivorous or seed‐feeding insects interact. We investigated colour manipulation in Ilex integra Thunb. berries caused by the seed parasitoid wasp Macrodasyceras hirsutum Kamijo and how that manipulation relates to fruit attractiveness for frugivorous birds. 2. In winter, the colour of I. integra berries varied from green to red, but most berries were greenish, indicating that the berries were immature. Berry dissection indicated that the number of live parasitoid larvae present within each berry was closely related to berry colour – the greater the number of live larvae, more intense is the green colour of the berry. However, the wasp larvae did not modify the shape or size of the berries. More than 98% of berries that were protected from the insects by gauze bags ripened and turned red. In the present study, berries with unfertilised seeds alone turned red. Field‐feeding preference tests showed that the brown‐eared bulbul Hypsipetes amaurotis Temminck preferred red berries to green berries. 3. We demonstrated that the seed parasitoid wasp manipulates the berry colour, but not its shape or size, in a density‐dependent manner. Because green berries suffered less from bird foraging, we believe that this colour manipulation helps the wasps to avoid being killed by the birds. The present study indicates that manipulation by wasps may reduce the level of mutualism between the tree and seed‐dispersing birds.  相似文献   

5.
  • 1 Diachasmimorpha krausii is a braconid parasitoid of larval tephritid fruit flies, which feed cryptically within host fruit. At the ovipositor probing stage, the wasp cannot discriminate between hosts that are physiologically suitable or unsuitable for offspring development and must use other cues to locate suitable hosts.
  • 2 To identify the cues used by the parasitoid to find suitable hosts, we offered, to free flying wasps, different combinations of three fruit fly species (Bactrocera tryoni, Bactrocera cacuminata, Bactrocera cucumis), different life stages of those flies (adults and larvae) and different host plants (Solanum lycopersicon, Solanum mauritianum, Cucurbita pepo). In the laboratory, the wasp will readily oviposit into larvae of all three flies but successfully develops only in B. tryoni. Bactrocera tryoni commonly infests S. lycopersicon (tomato), rarely S. mauritianum (wild tobacco) but never C. pepo (zucchini). The latter two plant species are common hosts for B. cacuminata and B. cucumis, respectively.
  • 3 The parasitoid showed little or no response to uninfested plants of any of the test species. The presence of adult B. tryoni, however, increased parasitoid residency time on uninfested tomato.
  • 4 When the three fruit types were all infested with larvae, parasitoid response was strongest to tomato, regardless of whether the larvae were physiologically suitable or unsuitable for offspring development. By contrast, zucchini was rarely visited by the wasp, even when infested with B. tryoni larvae.
  • 5 Wild tobacco was infrequently visited when infested with B. cacuminata larvae but was more frequently visited, with greater parasitoid residency time and probing, when adult flies (either B. cacuminata or B. tryoni) were also present.
  • 6 We conclude that herbivore‐induced, nonspecific host fruit wound volatiles were the major cue used by foraging D. krausii. Although positive orientation to infested host plants is well known from previous studies on opiine braconids, the failure of the wasp to orientate to some plants even when infested with physiologically suitable larvae, and the secondary role played by adult fruit flies in wasp host searching, are newly‐identified mechanisms that may aid parasitoid host location in environments where both physiologically suitable and unsuitable hosts occur.
  相似文献   

6.
Bracoviruses are used by parasitoid wasps to allow development of their progeny within the body of lepidopteran hosts. In parasitoid wasps, the bracovirus exists as a provirus, integrated in a wasp chromosome. Viral replication occurs in wasp ovaries and leads to formation of particles containing dsDNA circles (segments) that are injected into the host body during wasp oviposition. We identified a large DNA transposon Maverick in a parasitoid wasp bracovirus. Closely related elements are present in parasitoid wasp genomes indicating that the element in CcBV corresponds to the insertion of an endogenous wasp Maverick in CcBV provirus. The presence of the Maverick in a bracovirus genome suggests the possibility of transposon transfers from parasitoids to lepidoptera via bracoviruses.  相似文献   

7.
We previously discovered that (2,4,4‐trimethyl‐2‐cyclohexenyl)‐methyl butyrate (cyclolavandulyl butyrate, CLB) is an attractant for the mealybug‐parasitic wasp Anagyrus sawadai Ishii (Hymenoptera: Encyrtidae: Anagyrini). This wasp is not likely to parasitize the Japanese mealybug, Planococcus kraunhiae (Kuwana) (Hemiptera: Pseudococcidae), under natural conditions. In this study, we showed that this ‘non‐natural’ enemy wasp can parasitize P. kraunhiae in the presence of CLB in field experiments. Laboratory‐reared mealybugs placed on persimmon trees with CLB‐impregnated rubber septa were parasitized significantly more often by endoparasitic wasps than those on non‐treatment trees (18.1–40.3 vs. 0–6.3%). Anagyrus sawadai accounted for 20% of the wasps that emerged from mealybugs placed on CLB‐treated trees. Moreover, CLB attracted another minor parasitoid, Leptomastix dactylopii Howard (Hymenoptera: Encyrtidae: Anagyrini), which also parasitized more P. kraunhiae in the presence of CLB. All wasps that emerged from the mealybugs on control trees were Anagyrus fujikona Tachikawa, a major parasitoid of P. kraunhiae around the test location. These results demonstrated that CLB can recruit an indigenous, but ‘non‐natural’ enemy that does not typically attack P. kraunhiae under natural conditions, as well as a minor natural enemy, for biological control of this mealybug species.  相似文献   

8.
9.
10.
Various physiological effects of Wolbachia infection have been reported in invertebrates, but the impact of this infection on behavior and the consequences of these behavioral modifications on fitness have rarely been studied. Here, we investigate the effect of Wolbachia infection on the estimation of host nutritive resource quality in a parasitoid wasp. We compare decision‐making in uninfected and Wolbachia‐infected strains of Trichogramma brassicae Bezdenko (Hymenoptera: Trichogrammatidae) on patches containing either fresh or old host eggs. For both strains, fresh eggs were better hosts than older eggs, but the difference was smaller for the infected strain than for the uninfected strain. Oviposition behavior of uninfected wasps followed the predictions of optimal foraging theory. They behaved differently toward high‐ vs. low‐quality hosts, with more hosts visited and more ovipositions, fewer high‐quality hosts used for feeding or superparasitism, and a sex ratio that was more biased toward females in patches containing high‐quality hosts than in patches containing low‐quality ones. Uninfected wasps also displayed shorter acceptance and rejection times in high‐quality hosts than in hosts of lower quality. In contrast, infected wasps were less efficient in evaluating the nutritive quality of the host (fresh vs. old eggs) and had a reduced ability to discriminate between unparasitized and parasitized hosts. Furthermore, they needed more energy and therefore engaged in host feeding more often. This study highlights possible decision‐making manipulation by Wolbachia, and we discuss its consequences for Wolbachia fitness.  相似文献   

11.
In a context where hosts are distributed in patches and susceptible to parasitism for a limited time, female parasitoids foraging for hosts might experience intraspecific competition. We investigated the effects of host and parasitoid developmental stage and intraspecific competition among foraging females on host-searching behaviour in the parasitoid wasp Hyposoter horticola. We found that H. horticola females have a pre-reproductive adult stage during which their eggs are not mature yet and they forage very little for hosts. The wasps foraged for hosts more once they were mature. Behavioural experiments showed that wasps’ foraging activity also increased as host eggs aged and became susceptible to parasitism, and as competition among foraging wasps increased.  相似文献   

12.
Some polysphinctine parasitoid wasps can alter the web building behavior of their host spiders. In this paper, we describe and illustrate a new species Eruga unilabiana sp. nov. and report for the first time, to the best of our knowledge, the interaction between this parasitic wasp and the linyphiid spider Dubiaranea sp. We investigated the wasp's host selection, development, and manipulation of host behavior. We found that most of the parasitized spiders were intermediate‐sized adult females that probably provide sufficient resources for parasitoid larvae and are less vulnerable for parasitoid females than larger host individuals at attack. The cocoon web of Dubiaranea sp. consists of a complex three‐dimensional tangle structure with several non‐stick radial lines that converge at the cocoon. In addition, E. unilabiana individuals construct their cocoons horizontally, which differ from cocoons of the majority of polysphinctine wasps. This study provides important information and discussion to further understand the evolution of parasitoid wasp–spider interactions.  相似文献   

13.
The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4‐day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae‐larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

14.
Sclerodermus pupariae Yang et Yao (Hymenoptera: Bethylidae) is used as a potential biocontrol agent for several buprestid and cerambycid larvae. This study aimed to enhance the efficiency of mass‐rearing of this parasitoid by investigating the fitness gain of this bethylid wasp, including the proportion of successful parasitism and development, brood size, sex ratio, proportion of winged female offspring, body size and longevity of female offspring, under eight different maternal parasitoid density treatments using Thyestilla gebleri Faldermann as host in the laboratory. The results indicated that the foundress densities did not affect the parasitism or emergence rate of this parasitoid. Brood size of the parasitoids increased significantly when the number of maternal wasps ranged from one to four. However, further increases in foundress number did not affect the parasitoid brood size. The sex ratios of S. pupariae were always female‐biased. The proportions of male in the progeny colonies were <10% throughout all experimental treatments. The percentage of winged female progeny was not significantly influenced by the density of adult maternal parasitoids. Body sizes of parasitoids significantly declined with increasing maternal parasitoid densities. Although the parasitoid body size reduced when maternal wasp number was higher, it could be compromised by the relatively higher number of female offspring produced. Further, more than 70% of the parasitoids remained alive when they were stored at 12°C for four months throughout the experiments. These findings suggest that exposure of four female wasps to a single host larva would result in the highest fitness of S. pupariae. Our findings might provide a new approach to enhance the efficiency of mass‐rearing of this bethylid wasp.  相似文献   

15.
Good culturing methods play an important role in the study of insect behavior and its application to pest management. Here, we describe and validate a new method for rearing the parasitoid wasp, Diachasmimorpha kraussii, which attacks some of the world's worst fruit fly pests and is an internationally used biological control agent. Our method differs from standard culturing approaches by presenting adult wasps with host‐infested artificial media within a “culturing bag,” which mimics a natural (fruit) oviposition substrate. In laboratory trials using wild collected D. kraussii, the culturing bag method was compared to the use of host‐infested nectarines, and a commonly used laboratory method of presenting host‐infested artificial media within Petri dishes. The culturing bag method proved to be a significant improvement on both methods, combining the advantages of high host survival in artificial media with parasitism levels that were the equivalent to those recorded using host‐infested fruits. In our field study, culturing bags infested with the Queensland fruit fly, Bactrocera tryoni, and hung in a mixed peach and nectarine orchard proved to be effective “artificial fruits” attracting wild D. kraussii for oviposition. Significantly more adult wasps were reared from the culturing bags compared to field collected fruits. This was shown to be due to higher fruit fly larval density in the bags, as similar percentage parasitism rates were found between the culturing bags and ripe fruits. We discuss how this cheap, time‐efficient method could be applied to collecting and monitoring wild D. kraussii populations in orchards, and assist in maintaining genetic variability in parasitoid laboratory cultures.  相似文献   

16.
Acacia drepanolobium is an obligate ant‐plant that bears dehiscent pods exploited by predispersal seed‐predators and parasitoids. Fruit set and seed germination in relation to ant‐association, bruchid and parasitoid infestation were investigated in a large‐scale multi‐year study in Kenya. Ant‐association had a significant impact on the overall numbers of fruiting trees. 94.8% of Crematogaster mimosae‐occupied trees, 25.6% of C. nigriceps‐occupied trees, and 82.2% of Tetraponera penzigi‐occupied trees set fruit. Within each tree, ant‐association had no significant impact on the amount of seed produced: C. mimosae‐occupied trees produced 47.5 seeds per branch, C. nigriceps‐occupied trees 44.9 seeds per branch and T. penzigi‐occupied trees 38.3 seeds per branch. Ant‐association did not limit seed‐predators or vary significantly by ant. Seeds infested by bruchids germinated in significantly lower proportions (6.2%) compared to uninfested seed (78.6%). Bruchid‐infested seed is also exploited by parasitoid wasps. Parasitoids appear to have a moderate but significant ‘rescue’ effect on bruchid‐infested seed with 18.4% of parasitoid‐infested seed germinating. Stable isotopes (δ15N) revealed the trophic structure of the seed‐associated insects, showing clearly that bruchids are seed predators and the parasitoid wasp Dinarmus magnus exploits the dominant Bruchidius sp.  相似文献   

17.
The mating behaviour of a quasi‐gregarious egg parasitoid Telenomus triptus Nixon (Hymenoptera: Platygastridae), which exploits egg masses of a stink bug Piezodorus hybneri (Heteroptera: Pentatomidae), is examined in the laboratory. In this parasitoid wasp, male adults that emerge earlier stay at the natal egg mass and mate with subsequently emerging females. In the present study, a male adult that encounters the emergence of another male always waits for it to egress, and then mounts the newly emerging male. To examine why males of T. triptus show same‐sex sexual behaviour, male adults are presented with a parasitized host egg mass or a freshly killed wasp. Male adults are observed to remain at host egg masses from which only male wasp(s) had emerged. In addition, male adults attempt to copulate with freshly killed young male wasps. It is suggested that newly emerging male wasps are targets of same‐sex sexual behaviour because they possess cues for male sexual behaviour similar to the cues of females. Both the sex and age of freshly killed wasps affect the frequency of the sexual behaviour of male adults: females are more attractive than males, although their attractiveness declines with age. When the mating opportunity is restricted to the natal egg mass, the costs of failing to notice newly emerging female adults should be extremely high. Therefore, males are forced not to discriminate the sex, resulting in same‐sex sexual behaviour.  相似文献   

18.
Insect microbe associations are diverse, widespread, and influential. Among the fitness effects of microbes on their hosts, defense against natural enemies is increasingly recognized as ubiquitous, particularly among those associations involving heritable, yet facultative, bacteria. Protective mutualisms generate complex ecological and coevolutionary dynamics that are only beginning to be elucidated. These depend in part on the degree to which symbiont‐mediated protection exhibits specificity to one or more members of the natural enemy community. Recent findings in a well‐studied defensive mutualism system (i.e., aphids, bacteria, parasitoid wasps) reveal repeated instances of evolution of susceptibility or resistance to defensive bacteria by parasitoids. This study searched for similar patterns in an emerging model system for defensive mutualisms: the interaction of Drosophila, bacteria in the genus Spiroplasma, and wasps that parasitize larval stages of Drosophila. Previous work indicated that three divergent species of parasitic wasps are strongly inhibited by the presence of Spiroplasma in three divergent species of Drosophila, including D. melanogaster. The results of this study uncovered two additional wasp species that are susceptible to Spiroplasma and two that are unaffected by Spiroplasma, implying at least two instances of loss or gain of susceptibility to Spiroplasma among larval parasitoids of Drosophila.  相似文献   

19.
Plants are able to activate direct and indirect defences against egg deposition by herbivorous insects. A known indirect defence is the production of synomones to help egg‐ and egg‐larval parasitoids to locate their hosts. The wasp Ascogaster reticulata Watanabe (Hymenoptera: Braconidae) is a solitary egg‐larval parasitoid of the moth Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae), which lays eggs and feeds as caterpillars on the leaves of the tea plant Camellia sinensis (L.) Kuntze (Theaceae). Here, we studied whether or not oviposition by A. honmai induces tea plants to produce synomones that help the parasitoid to locate its host. An olfactometer bioassay suggested that synomones produced by the infested plants did not attract the parasitoid over a short range. However, a contact bioassay showed that tea leaves were induced to arrest the parasitoid 24 h after egg deposition and remained induced until the host‐egg masses were no more attractive to the parasitoids. Wing scales and deposits of adult moths and the contents of the egg masses did not induce the tea leaves to arrest the parasitoid, but the contents of the female moth's reproductive system did. Synomone induction was systemic: uninfested leaves in the vicinity of egg‐laden leaves also arrested the parasitoid.  相似文献   

20.
Environmental pressures are expected to favour organisms that optimally allocate metabolic resources to reproduction and survival. We studied the resource allocation strategies and the associated tradeoffs in the parasitoid wasp Venturia canescens, and their adaptation to the characteristics of the environment. In this species, individuals of two reproductive modes coexist in the same geographical locations, but they mainly occur in distinct habitats. Thelytokous (asexual) wasps are mostly found in anthropogenic habitats, where hosts tend to aggregate and food is absent. Arrhenotokous (sexual) wasps are exclusively found in natural habitats, where hosts are scattered and food is present. We analysed (1) the quantity of energy stored during ontogeny, (2) the tradeoff between reproduction and survival, by measuring egg load and longevity and (3) the host patch exploitation behaviour of the wasps at emergence. Arrhenotokous wasps emerged with more metabolic resources than thelytokous ones, especially glycogen, a nutrient that could be used for flying in search of hosts and/or food. Thelytokous wasps allocated more energy than arrhenotokous wasps to egg production: this would allow them to parasitize more hosts. The tradeoff between egg production and longevity was not revealed within reproductive modes, but when comparing them. At emergence, arrhenotokous wasps tended to exploit host patches less thoroughly than thelytokous wasps, suggesting that by leaving the host patch, they search for food. The results clearly showed adaptations to the characteristics of habitats preferentially inhabited by the two reproductive modes, and suggested a mechanism that facilitates their coexistence in natural conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号