首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytological analysis showed that disturbances referable to division and development of spermatogonia (intermediate and B types) and primary spermatocytes in irradiated animals are modified by injection of exogenous testosterone. It was established that the hormone exerts its modifying effect after radiation doses affecting mechanisms of spermatogenesis regulation. Testosterone bound to target cells initiates their division and decreases duration of spermatogonium mitosis block and delay in primary spermatocyte development increasing the number of germ cells.  相似文献   

2.
Adult rams were hypophysectomized and treated for 20 days with testosterone (2 X 0.25 g/day), PMSG (2 X 300 i.u./day) or hCG (2 X 250 i.u./day), or for 40 days with testosterone (2 X 0.25 g/day). All treatments maintained a normal concentration of testosterone within the seminiferous tubules. Quantitative histological analysis showed that (1) the differentiation from A0 to A1 spermatogonia was maintained by PMSG or hCG but not completely by testosterone; (2) the transition from intermediate spermatogonia to primary spermatocytes was maintained only by PMSG but not by testosterone or hCG; (3) meiotic prophase and spermiogenesis were maintained by the three hormones but there were qualitative abnormalities in the spermatids. These results suggest that in the ram, the differentiation of renewing stem spermatogonia is under LH control and that the last stages of spermatogonial multiplication, from intermediate to B spermatogonia and to primary spermatocytes, are under the control of the FSH-like activity of PMSG.  相似文献   

3.
To determine the separate spermatogenic actions of FSH and testosterone, adult male lizards Hemidactylus flaviviridis with recrudescent testes were administered the non-steroidal antiandrogen flutamide either alone or in combination with FSH or testosterone, and the histology and histochemistry of the testes and ductus epididymides were studied. Flutamide-treated animals displayed a marked hypertrophy of Leydig cells. A few spermatids were also seen in testis of more than half the animals treated with flutamide. Flutamide also produced a significant increase of primary spermatocytes; no spermatids were observed in controls. A significant inhibition of spermatogenesis was noted in lizards treated either with testosterone alone or in combination with flutamide. Ovine FSH treatment caused a significant stimulation of spermatogenesis, as indicated by the increase of primary and secondary spermatocytes and the transformation of secondary spermatocytes into spermatids or, in a few cases, into spermatozoa. A considerable depletion of sudanophilic lipid and moderate delta 5-3 beta-hydroxysteroid dehydrogenase activity was noted in the Leydig cells of FSH-treated animals indicating enhanced steroidogenesis. Similar results were obtained when lizards were treated with flutamide + FSH. The effects of simultaneous treatment of flutamide with FSH or testosterone on ductus epididymidis revealed that flutamide markedly inhibited the epithelial cell height and lumen diameter with a loss of luminal content when compared to FSH or testosterone-treated lizards.  相似文献   

4.
The incorporation of [(3)H]uridine into RNA was studied quantitatively (by incorporation of [(3)H]uridine into acid-precipitable material) and qualitatively (by phenol extraction and electrophoretic separation of RNA in polyacrylamide gels) in preparations enriched in primary spermatocytes, obtained from testes of rats 26 or 32 days old. The rate of incorporation of [(3)H]uridine into RNA of isolated spermatocytes was constant during the first 8h of incubation, after which it decreased, but the decreased rate of incorporation was not reflected in a marked change in electrophoretic profiles of labelled RNA. In isolated spermatocytes, [(3)H]uridine was incorporated mainly into heterogeneous RNA with a low electrophoretic mobility. Most of this RNA was labile, as shown when further RNA synthesis was inhibited with actinomycin D. Spermatocytes in vivo also synthesized heterogeneous RNA with a low electrophoretic mobility. A low rate of incorporation of [(3)H]uridine into rRNA of isolated spermatocytes was observed. The cleavage of 32S precursor rRNA to 28S rRNA was probably retarded in spermatocytes in vitro as well as in vivo. RNA synthesis by preparations enriched in early spermatids or Sertoli cells was qualitatatively different from RNA synthesis by the spermatocyte preparations. It is concluded that isolated primary spermatocytes maintain a specific pattern of RNA synthesis, which resembles RNA synthesis in spermatocytes in vivo. Therefore isolated spermatocytes of the rat can be used for studying the possible regulation of RNA synthesis during the meiotic prophase.  相似文献   

5.
Histone variants in rat spermatogonia and primary spermatocytes   总被引:5,自引:0,他引:5  
The levels and synthesis of histone variants have been directly measured in spermatogonia and in various stages of primary spermatocytes purified from the rat testis. These measurements were made possible by the development of a procedure, employing centrifugal elutriation and density gradient centrifugation, to separate highly enriched populations of such cells from immature rat testes at the early stages of spermatogenesis. The results show a difference in regulation of the synthesis and accumulation of testis-specific histones H1t, TH2A, TH2B, and TH3. TH3 is present and actively synthesized in A and B spermatogonia. The testis-enriched variants, H2A.X and H1a, are also present at their maximal levels in A spermatogonia. No detectable amounts of H1t, and at most, low levels of TH2A and TH2B could be found in spermatogonia. While TH2A and TH2B are already present and actively synthesized in early primary spermatocytes (around the preleptotene stage), H1t does not accumulate until the pachytene stage.  相似文献   

6.
Ribosomal RNA in mouse spermatocytes   总被引:3,自引:0,他引:3  
  相似文献   

7.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

8.
Adult male Wistar rats were treated with Danazol (4 mg/day s.c.) for 52 days. The drug produced a marked, rapid drop in serum testosterone concentrations to very low levels and caused a slower decrease in serum FSH, LH and testis weight. Flow cytometric analysis of testicular cell suspensions showed a decline in the absolute numbers of haploid cells (spermatids), tetraploid cells (mainly pachytene spermatocytes) and of cells in the S-phase of the division cycle, suggesting that Danazol inhibited proliferation of spermatogonia and/or primary spermatocytes. Histological counting of the different types of spermatogonia, however, revealed no significant change in their numbers during Danazol treatment. It is concluded that Danazol inhibited spermatogenesis primarily after the preleptotene stage of primary spermatocytes.  相似文献   

9.
10.
Trout testis cells were separated into various developmental classes by velocity sedimentation in bovine serum albumin gradients and were identified morphologically with particular stages of the process of spermatogenesis. The stage of testis cell differentiation at which protamine mRNA appears in the cell cytoplasm for the first time was determined by hybridization of RNA populations extracted from the separated cells to radioactively labeled protamine cDNA. Primary spermatocytes represent the earliest stage of differentiation at which protamine mRNA can be detected in large quantities in the cell cytoplasm, establishing that the synthesis of this class of mRNA occurs at a much earlier stage than the time of its translation at the spermatid stage. Protamine mRNA sequences were found in both the polysomes and postribosomal supernatant of the spermatid cells which are involved in the synthesis of protamine, while primary and secondary spermatocytes contained the mRNA sequences only in their postribosomal supernatant fractions. These findings strongly suggest that protamine mRNA is synthesized, accumulated, and stored in the cell sap of primary and secondary spermatocytes in the form of “inactive” messenger ribonucleoprotein particles, which are “activated” and translated at the spermatid stage.  相似文献   

11.
The effect of temperature on testicular DNA synthesis in mice was studied in vitro. By using cultures of cryptorchid testis, DNA synthesis of differentiated germ cells, such as intermediate and type B spermatogonia and resting primary spermatocytes, was shown to be temperature-sensitive, while that of undifferentiated type A spermatogonia was not. DNA synthesis of non-germ cells was not temperature-sensitive. This temperature sensitivity of germ cells in DNA synthesis may be one cause of the thermal inhibition of germ cell differentiation.  相似文献   

12.
A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).  相似文献   

13.
Summary Three 46,XY phenotypically male, azoospermic brothers out of thirteen sibs from a consanguineous marriage were studied and found to have a unique pattern of testicular histology with arrest of spermatogenesis at the pachytene stage of primary spermatocytes. Endocrinological evaluation showed elevated plasma luteinizing (LH) and normal to elevated follicle-stimulating (FSH) hormones, positive gonadotropin pituitary response to luteinizing hormone-releasing hormone, depletion of LH and FSH levels by exogenous testosterone (T) administration, normal levels of T and dihydrotestosterone hormones, and elevation of T after stimulation with human chorionic gonadotropin hormone. Electrophoretic assay of lactic dehydrogenase isozymes did not reveal band C4 in semen or testicular tissue. These traits seem to constitute a hitherto undescribed form of infertility in which spermatogenesis arrest at the first spermatocyte level is the main feature. The parental consanguinity suggests autosomal recessive inheritance.  相似文献   

14.
The effect of testosterone on precursor mitochondrial aspartate aminotransferase (pmAAT) mRNA was studied in rat ventral prostate and primary cell cultures of mini-pig prostate. Testosterone induced a 2-3-fold increase in pmAAT mRNA level in both rat ventral prostate and mini-pig prostate cultures. The pmAAT mRNA induction occurred 30 min after testosterone treatment and was maximal by 1.5 h. Prostatic mAAT activity was also induced by testosterone with a 1-2 h lag period. The time-course of induction of pmAAT mRNA, pmAAT activity and mAAT activity was consistent with stimulation of mRNA synthesis followed by increased synthesis and import of pmAAT into mitochondria. The effect of testosterone on pmAAT mRNA was specific because the increase in pmAAT mRNA was at least 2-fold greater than the increase in poly (A+) RNA. These results suggest that testosterone stimulated mAAT activity by induction of pmAAT mRNA. This continues to support our proposal that a major physiological effect of testosterone is increased pmAAT mRNA steady-state levels which result in increased pmAAT synthesis and increased mAAT activity. These changes ultimately result in increased citrate production by prostate epithelial cells.  相似文献   

15.
Our previous studies (10, 11) showed that mammalian follicle-stimulating hormone (FSH) alone was indispensable and sufficient for the initiation and promotion of spermatogenesis from secondary spermatogonia to primary spermatocytes in organ culture of testes fragments from the newt, Cynops pyrrhogaster. The present study demonstrated that FSH promoted in the same model system the differentiation of primary spermatocytes even further: to the stage of elongated spermatids. When testes fragments, consisting of somatic cells and germ cells (mostly primary spermatocytes), were cultured in a control medium for three weeks, only round spermatids and spermatogonia were observed; both the diameter of the cysts and the viability of the germ cells decreased to about 10–15% of the original level. On the other hand, when the medium was supplemented with FSH, elongated spermatids appeared by the second week; both the diameter of the cysts and the viability of the germ cells were maintained at a higher level than in the control medium. The effect of FSH was dose-dependent. However, neither transferrin, androgens (testosterone and 5α-dihydrotestosterone) nor luteinizing hormone (LH) was effective. The addition of cyanoketone, a specific inhibitor of 3β-hydroxy-Δ5-steroid dehydrogenase (3β-HSD) (32), to the FSH-containing medium did not prevent the differentiation promoted by FSH, indicating that it is unlikely that Δ4-steroid metabolites produced in fragments by FSH acted directly on germ cells. Insulin was found to improve the viability of germ cells during a 2 week of culture period. In the presence of FSH, the cells in various differentiative stages had morphological characteristics very similar to those in vivo, whereas in the absence of FSH primary spermatocytes showed abnormal features in their nuclei and cytoplasm, indicating that they were deteriorating. These results and our previous results (1–3) suggest that FSH promotes primary spermatocytes to differentiate into elongated spermatids probably by stimulating Sertoli cells to secrete factors which then act on the germ cells.  相似文献   

16.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

17.
Administration (ip) of FSH (10 IU/0.1 ml distilled water (dw)/lizard/alternate days/30 days) to adult male lizards, Mabuya carinata, during the early recrudescence phase of the reproductive cycle caused activation of spermatogenic and steroidogenic activity of the testis, as shown by a significant increase in mean number of spermatogonia, primary spermatocytes and spermatids, and serum levels of testosterone, as compared to initial controls. In addition, there were abundant spermatozoa in the lumen of the seminiferous tubules. Interestingly, administration of a similar dosage of FSH to lizards exposed to stressors (handling, chasing, and noise randomly applied, five times a day for 30 days) resulted in a significant increase in mean number of spermatogonia and primary spermatocytes over initial control values, whereas the number of secondary spermatocytes and spermatids and serum levels of testosterone did not significantly differ from those of initial controls, and were significantly lower than FSH treated normal lizards. Further, spermatozoa were infrequently found in the seminiferous tubules of these lizards. Treatment controls (receiving 0.1 ml dw/lizard/alternate days for 30 days) did not show significant variation in mean number of spermatogonia, spermatocytes and spermatids, and serum levels of testosterone from initial controls. Another group of lizards was exposed to stressors and did not receive FSH. These lizards showed a significant decrease in mean number of secondary spermatocytes compared to treatment controls and all other parameters did not significantly differ from those of both control groups. The results reveal that gonadotrophin-induced spermatogonial proliferation occurs under stressful conditions, whereas progress of spermatogenesis beyond primary spermatocyte stage is impaired due to inhibition (under stress) of gonadotrophin induced steroidogenic activity in M. carinata.  相似文献   

18.
The effect of temperature on testicular DNA synthesis in mice was studied in vitro. By using cultures of cryptorchid testis, DNA synthesis of differentiated germ cells, such as intermediate and type B spermatogonia and resting primary spermatocytes, was shown to be temperature-sensitive, while that of undifferentiated type A spermatogonia was not. DNA synthesis of non-germ cells was not temperature-sensitive. This temperature sensitivity of germ cells in DNA synthesis may be one cause of the thermal inhibition of germ cell differentiation.  相似文献   

19.
The ability of rat germinal cells to recover from genotoxic stress has been investigated using isolated populations of primary spermatocytes and round spermatids. Using a comet assay at pH 10.0 to assess single strand breakage (SSB) in DNA, it was found that a high level of damage was induced by 5 Gy gamma-irradiation and acute exposure to 50 microM H2O2. This damage was effectively repaired during a subsequent recovery period of 1-3 hours culture in vitro but repair was significantly delayed in the presence of the poly(ADP-ribose)polymerase (PARP) inhibitor 3-aminobenzamide (3-ABA). Immunofluorescence detection of PARP with specific antibodies localised the protein to discrete foci within the nucleus of both spermatocytes and spermatids. Poly(ADP-ribose) (pADPR) could also be detected in spermatid nuclei following gamma-irradiation or H2O2 treatment. Moreover, PARP activation occurs both in spermatocytes and spermatids left to recover after both genotoxic stresses. The NO donors, 3-morpholino-sydnonimine (SIN-1) and S-nitrosoglutathione (SNOG), caused significant SSBs in both spermatocytes and spermatids. The effects of SIN-1 could be prevented by exogenous catalase (CAT), but not superoxide dismutase (SOD), in the cell suspensions. SNOG-induced SSBs were insensitive to both CAT and SOD. It is concluded that DNA in spermatocytes and spermatids is sensitive to damage by gamma-irradiation and H2O2 and that efficient repair of SSBs requires PARP activity.  相似文献   

20.
Spermatogenesis is a highly ordered process which requires mitotic and meiotic divisions. In this work, we studied the relative changes in the levels of the two components of the M-phase promoting factor (MPF): the regulatory subunit cyclin B1 (CycB1) and its catalytic subunit cdk1, in spermatogenic cells of rats between 16 and 90 days of life. A multivariate flow cytometry analysis of forward scatter (FSC), side scatter (SSC) and DNA content was used to identify six populations of rat germ cells: spermatogonia with preleptotene spermatocytes, young pachytene spermatocytes, middle to late pachytene spermatocytes, secondary spermatocytes with doublets of round spermatids, round spermatids, and elongated spermatids. For any population studied no significant difference in the relative cellular content of CycB1 or cdk1 proteins between animals of different ages was observed. By contrast, CycB1 and cdk1 levels were different between the different populations of germ cells. CycB1 and cdk1 were rather high in young pachytene spermatocytes and culminated in late spermatocytes, i.e. just before the first meiotic division. The relative levels of the two proteins remained high in secondary spermatocytes then decreased in round spermatids at the exit of meiosis. Similar results were obtained by Western-blot analysis of total proteins obtained from lysates of elutriated fractions of spermatocytes and spermatids. MPF activity was assessed in lysates of germ cells from 32-day-old rats or adult animals using p13suc1 agarose and histone H1 as an exogenous substrate. H1 kinase activity was higher in pachytene spermatocytes than in round spermatid fractions from both adult and young rats. These results indicate that the meiotic G2/M transition is associated to high levels of CycB1 and cdk1 leading to high MPF activity irrespective of the age of the animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号