首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of intracellular Na+ and pHi in human blood platelets is known to be controlled by the function of the Na+/H+ exchanger. The phosphorylation state of the Na+/H+ exchanger which determines the exchanger activity in human blood platelets is regulated by the activities of protein kinases and protein phosphatases. Observations in this study indicate that arginine vasopressin (AVP) that interacts with a V1 receptor, activates the Na+/H+ exchange in human blood platelets through a genistein-inhibited mechanism. The AVP-activated Na+/H+ exchange is probably not regulated by protein kinase C (PKC), since this activation is not inhibited by staurosporine. The multiple ways in which platelet Na+/H+ exchange can be modulated may indicate the critical role played by this exchanger in the homeostasis control of pHi in human blood platelets.  相似文献   

2.
Erythrocyte morphology, their aggregation ability and microcirculatory pattern in the mesentery of the small intestine have been studied stepwise on 12 dogs under artificial blood circulation. It has been shown that erythrocyte lesions followed by pathological aggregation play an important role in the pathogenesis of microcirculatory failure. Prolonged artificial circulation provokes structural reorganization in erythrocytes, thus affecting both blood rheology and gas exchange.  相似文献   

3.
Cardiopulmonary bypass (CPB) procedures require a blood-gas exchanger (oxygenator) to temporarily replace the respiratory function of the lungs. In the past the majority of CPB procedures have been carried out with bubble oxygenators which effect gas exchange by dispersion of bubbles into the blood. Membrane oxygenators, on the other hand, utilize a hydrophobic gas permeable membrane between the blood and gas phases.Bubble oxygenators are being superseded by membrane types for CPB due to improvements in membrane technology and mass transfer efficiency. These advances are reviewed in this paper and are illustrated by reference to the gas exchange and operating characteristics of a number of clinical oxygenators designed for adult CPB.Membrane oxygenatorsare also being used for long-term support in the treatment of acute respiratory failure. Operated in a partial bypass circuit, the oxygenator may have to function for several days or weeks. In one particular treatment method, the rate of spontaneous breathing is controlled by the partial or total removal of the metabolic CO2 production by the membrane oxygenator. For this method, known as extracorporeal CO2 removal (ECCO2R), the oxygenator must be optimized for CO2 transfer at low blood flow rates. The suitability of clinical oxygenators for ECCO2R is discussed in terms of gas exchange and functionality over a prolonged operation.  相似文献   

4.
Recent evidences include mitochondrial dysfunctions in pathophysiology of mood disorders. We examined association between depressive disorders and mitochondrial respiration using both intact and permeabilized blood platelets. In intact platelets, physiological respiration, maximal capacity of electron transport system and respiratory rate after complex I inhibition were decreased in depressive patients, who reached partial remission, compared to healthy controls. Respiratory rates were unchanged in several respiratory states in permeabilized platelets. Results indicate that changes in respiratory rate in intact platelets can be used as biological marker of depressive disorder. The hypothesis that decreased mitochondrial respiratory rate participate in pathophysiology of depression was supported.  相似文献   

5.
Ca2+ homeostasis in unstimulated platelets   总被引:4,自引:0,他引:4  
Unstimulated platelets maintain a low cytosolic free Ca2+ concentration and a steep plasma membrane Ca2+ gradient. The mechanisms that are required have not been completely defined. In the present studies, 45Ca2+ was used to examine the kinetics of Ca2+ exchange in intact unstimulated platelets. Quin2 was used to measure the cytosolic free Ca2+ concentration. Under steady-state conditions, the maximum rate of Ca2+ exchange across the platelet plasma membrane, 2 pmol/10(8) platelets/min, was observed at extracellular free Ca2+ concentrations 20-fold less than in plasma. Two intracellular exchangeable Ca2+ pools were identified. The size of the more rapidly exchanging pool (t 1/2, 17 min) and the cytosolic free Ca2+ concentration were relatively unaffected by large changes in the extracellular Ca2+ concentration. In contrast, the size of the more slowly exchanging Ca2+ pool (t 1/2, 300 min) varied with the extracellular Ca2+ concentration, which suggests that it is physically as well as kinetically distinct from the rapidly exchangeable Ca2+ pool. The locations of the Ca2+ pools were determined by differential permeabilization of 45Ca2+-loaded platelets with digitonin. 45Ca2+ in the rapidly exchanging pool was released with lactate dehydrogenase, which suggests that it is located in the cytosol. 45Ca2+ in the slowly exchanging pool was released with markers for both the dense tubular system and mitochondria, but inhibition of mitochondrial Ca2+ uptake with carbonyl cyanide m-chlorophenylhydrazone had no effect on the size of the slowly exchangeable Ca2+ pool or the cytosolic free Ca2+ concentration. In contrast, addition of metabolic inhibitors (KCN plus carbonyl cyanide m-chlorophenylhydrazone plus deoxyglucose) or trifluoperazine caused a decrease in the size of the slowly exchangeable Ca2+ pool and an increase in the cytosolic free Ca2+ concentration. These observations suggest that Ca2+ homeostasis in unstimulated platelets is maintained by limiting Ca2+ influx from plasma, actively promoting Ca2+ efflux, and sequestering Ca2+ within an internal site, which is most likely the dense tubular system and not mitochondria.  相似文献   

6.
SYNOPSIS. New data on resting metabolism, aerobic capacity,respiratory morphology and bimodal breathing capacities offourcaecilian species were combined with previously known data oncaecilian and amphibian biology to discern differing or unifyingthemes of gas exchange within the Gymnophiona and among theAmphibia. Discoveries include 1) a uniform resting metabolismamong caecilians that is distinctly lower than that of anuransand urodeles, 2) an aerobic capacity following activity thatrivals or exceeds that of other amphibians, and 3) despite previoussuggestions to the contrary, a substantial contribution of theskin to respiratory gas exchange, apparently sufficient to sustainthe low resting metabolism. In contrast, pulmonary gas transportappears to dominate during metabolic recovery from exercise,which is comparatively fast. The contributing roles of the skinand lungs to this extreme scope of respiratory needs in caeciliansare further discussed in light of the structural nature of andcirculatory supply to each respiratory bed, and the respiratoryproperties of caecilian blood.  相似文献   

7.
To differentiate the effects of gas and liquid ventilation on cardiopulmonary function during early development, we compared the clinical, physiological, and histological profiles of gas- and liquid-ventilated preterm lambs (n = 16; 108-116 days gestation). Immediately after cesarean section delivery, ventilation commenced using gas delivered by a volume ventilator (n = 9) or liquid perfluorochemical (n = 7) delivered by a mechanically assisted liquid ventilation system. Pulmonary gas exchange, acid-base status, vital signs, and respiratory compliance were assessed during the 3-h protocol; sections of the lungs were obtained for histological analyses when the animals were killed. Six of nine gas-ventilated lambs expired from respiratory failure before 3 h, with the remaining animals experiencing severe respiratory insufficiency, pneumothoraces, and cardiovascular deterioration. Six of seven liquid-ventilated lambs survived with good gas exchange and cardiovascular stability and without fluorothorax; one experienced ventricular fibrillation before 1 h and expired despite pulmonary stability. Respiratory compliance was significantly greater in the liquid- than in the gas-ventilated lambs. Histological analyses of gas-ventilated lungs demonstrated nonhomogeneous lung expansion, with thick-walled gas exchange spaces containing proteinaceous exudate, hemorrhage, and hyaline membranes. In contrast, liquid-ventilated lungs appeared clear, with thin-walled and uniformly expanded gas exchange spaces that were free of hyaline membranes and luminal debris. Morphometric analyses demonstrated that surface area and gas exchange index were greater in the liquid- than in the gas-ventilated lambs. These results indicate that elimination of surface active forces by liquid ventilation during early development provides more effective gas exchange with less barotrauma compared with gas ventilation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The infectivity of hamster scrapie strain 263K was measured in platelets isolated from blood pooled from six hamsters with clinical scrapie. The total number of infectious doses present in the blood pool was 220, out of which only 3.5 infectious doses were associated with platelets. A larger proportion of the total infectivity was recovered from the mononuclear leukocyte fraction. This result indicates that platelets are not the source of blood-borne infectivity in transmissible spongiform encephalopathy-infected hamsters.  相似文献   

9.
Intravena caval respiratory support (or membrane oxygenation) is a potential therapy for patients with acute respiratory insufficiency. A respiratory support catheter is being developed that consists of a bundle of hollow fiber membranes with a centrally positioned pulsating balloon to enhance gas exchange. This study examined the influence of vessel compliance on the gas exchange performance of the pulsating respirator, support catheter. Polyurethane elastic tubes were fabricated with compliance comparable to that measured in bovine vena cava specimens. The gas exchange performance of the respiratory catheter was studied in an in-vitro flow loop using either the model compliant tube or a rigid tube as a "mock" vena cava. Balloon pulsation enhanced gas exchange comparably in both rigid and model compliant vessels up to 120 bpm pulsation frequency. Above 120 bpm gas exchange increased with further pulsation in the rigid tube, but no additional increase in gas exchange was seen in the compliant tube. The differences above 120 bpm may reflect differences in the compliance of the elastic tube versus the natural vena cava.  相似文献   

10.
Vascular casting techniques combined with scanning electron microscopy of fixed tissue have been used to describe the vascular anatomy of the gills of the dogfish ( Scyliorhinus canicula ). Two distinct blood pathways were revealed: a 'respiratory' blood pathway which conveys deoxygenated blood from the heart to the gas exchange surface of the gills and then carries oxygenated blood away to the systemic circulation, and a 'non-respiratory' blood pathway which interconnects with the respiratory blood pathway and which diverts blood into the venous drainage from the gills.
The physiological function of this complex circulation in the gills of elasmobranchs is discussed in terms of both the osmotic constraints upon the animal, and the possible control of blood flow.  相似文献   

11.
The metabolic pool of adenine nucleotides in platelets can be labeled by incubating platelets for 1 h in vitro with [14C]adenosine or [32P]orthophosphate. When these platelets are treated with thrombin, the adenine nucleotides released are not labeled. Because of this, Holmsen's suggestion of a metabolically inert pool of granule nucleotides has been generally accepted. We have found that upon incubation of labeled rabbit platelets for longer times (up to 6 h) in vitro, or upon reinjection and reharvesting at times up to 66 h, the releasable pool of adenine nucleotides becomes labeled. Because the rates of 32p and 14C incorporation into this releasable pool are similar, it seems likely that these labels enter the granules as ATP. Equilibrium between the metabolic and granule pools is complete by 18 h. When rabbit platelets are labeled in vivo by intravenous injection of [32P]orthophosphate, peak labeling occurs between 60 and 70 h; this corresponds to their maturation time. The platelets probably incorporate 32P during their production in the megakaryocytes. The specific radioactivity of the adenine nucleotides in the releasable (granule) pool of these platelets is the same as the specific radioactivity in the nonreleasable (metabolic) pool. Since inorganic phosphate in platelets (and undoubtedly in the megakaryocytes) exchanges with inorganic phosphate in plasma, and since the radioactivity of the latter decreases rapidly, the adenine nucleotides in the two pools must exchange to maintain the same specific radioactivity. Transfer of adenine nucleotides into storage granules may represent a general phenomenon because it has been observed in the chromaffin cells of the adrenal medulla also.  相似文献   

12.
Blood platelets have been widely proposed as biomarkers in studies of mitochondrial function and aging-related and neurodegenerative diseases. Defects in mitochondrial function were found not only in the substantia nigra of Parkinson’s disease patients but also in their blood platelets. Similarly, it has also been described in the blood platelet mitochondria of Alzheimer’s disease patients. To study mitochondrial aerobic metabolism function and protein expression in platelets of multiple sclerosis (MS) patients and control subjects, mitochondrial aconitase, mitochondrial superoxide dismutases 1 and 2 (SOD1 and SOD2), and respiratory complex enzyme activities in platelets of MS patients and control subjects were determined. Likewise, mitochondrial lipid peroxidation and mitochondrial SOD1 and cytochrome c expressions were investigated. Mitochondrial aconitase activity was higher in MS patients than in controls (P?<?0.05). A significant increase on all respiratory complex activities in MS patients was observed (P?<?0.05). Mitochondrial lipid peroxidation was significantly higher in MS patients than in controls (P?<?0.05). Significant changes of cytochrome c and mitochondrial SOD1 expressions were detected (P?<?0.05), with a decrease of 44?±?5 % and an increase of 46?±?6 %, respectively. Our study reveals that significant changes in mitochondrial aerobic metabolism function and mitochondrial SOD1 and cytochrome c expressions are produced in platelets of MS patients.  相似文献   

13.
P Haab 《Federation proceedings》1982,41(6):2119-2121
On the basis of a very simple model for the association of diffusion and perfusion, an association common to many respiratory gas transfers, a simple equation is described that defines gas partial pressure equilibration in diffusion-perfusion-limited systems as a function of the ratio of D to beta bQ(D = diffusing capacity, beta b = blood capacitance coefficient, Q = perfusion). The equation applies to steady-state conditions and assumes D, beta b, and Q to be independent of gas partial pressures. In spite of the fact that this assumption may represent a gross simplification, the equation can be regarded as a powerful conceptual tool in the analysis of most gas exchange systems.  相似文献   

14.
We investigated the role of energy supplied by long-chain fatty acid oxidation in rat platelet function. Inhibition of the mitochondrial uptake of long-chain fatty acids was achieved by treating rats with 2-tetradecylglycidic acid (TDGA), a potent inhibitor of the overt form of carnitine palmitoyltransferase (CPT-I). The maximum aggregation rate (MAR), CPT-I activity, lactate production, oxygen consumption and adenine nucleotide content of isolated rat platelets were then studied in vitro. 4 h after the in vivo administration of TDGA, the CPT-I activity in saponin-permeabilized platelets was nearly completely inhibited along with a significant reduction in the MAR induced by ADP, thrombin and ionophore A23187. The ATP level, adenylate energy charge (ATP + 1/2 ADP)/(ATP + ADP + AMP) and ATP/ADP ratio in the platelet cytoplasmic pool were also reduced. Platelets from TDGA-treated rats showed lower oxygen consumption rates in both the basal respiratory and oxygen burst states. These results indicate that mitochondrial long-chain fatty acid oxidation coupled to oxidative phosphorylation is an important energy source in rat platelets and is probably involved in the maintenance of platelet function. Enhanced in vitro lactate production in platelets from TDGA-treated rats may have resulted from a compensatory increase in glycolysis which only partly compensated for impaired long-chain fatty acid oxidation.  相似文献   

15.
Insects are at high risk of desiccation because of their small size, high surface-area-to-volume ratio, and air-filled tracheal system that ramifies throughout their bodies to transport O(2) and CO(2) to and from respiring cells. Although the tracheal system offers a high-conductance pathway for the movement of respiratory gases, it has the unintended consequence of allowing respiratory transpiration to the atmosphere. When resting, many species exchange respiratory gases discontinuously, and an early hypothesis for the origin of these discontinuous gas exchange cycles (DGCs) is that they serve to reduce respiratory water loss. In this study, we test this "hygric" hypothesis by comparing rates of CO(2) exchange and water loss among flower beetles Protaetia cretica (Cetoniinae, Scarabaeidae) breathing either continuously or discontinuously. We show that, consistent with the expectations of the hygric hypothesis, rates of total water loss are higher during continuous gas exchange than during discontinuous gas exchange and that the ratio of respiratory water loss to CO(2) exchange is lower during discontinuous gas exchange. This conclusion is in agreement with other studies of beetles and cockroaches that also support the hygric hypothesis. However, this result does not exclude other adaptive hypotheses supported by work on ants and moth pupae. This ambiguity may arise because there are multiple independent evolutionary origins of DGCs and no single adaptive function underlying their genesis. Alternatively, the observed reduction in water loss during DGCs may be a side effect of a nonadaptive gas exchange pattern that is elicited during periods of inactivity.  相似文献   

16.
Human platelets maintain a low cytosolic free Ca2+ concentration in part by controlling plasma membrane Ca2+ transport. The present studies examine the role in this process of two well-characterized membrane proteins: glycoproteins IIb and IIIa. These glycoproteins form a Ca2+-dependent complex which serves as both the platelet fibrinogen receptor and the principle site for high affinity Ca2+ binding on the platelet surface. The kinetics of plasma membrane Ca2+ exchange were compared in normal platelets and in thrombasthenic platelets, which lack the IIb X IIIa complex. Under steady-state conditions, the maximum rate of plasma membrane Ca2+ exchange in the thrombasthenic platelets was half the rate observed in normal platelets. The size of the cytosolic exchangeable Ca2+ pool and the cytosolic free Ca2+ concentration, however, were normal. A quantitatively similar decrease in plasma membrane Ca2+ exchange was seen in normal platelets after incubation with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) at 37 degrees C, conditions that dissociate the IIb X IIIa complex. This decrease in the Ca2+ exchange rate in normal platelets could be prevented by preincubating platelets with a complex-specific anti-IIb X IIIa monoclonal antibody, but not by preincubating platelets with an anti-IIIa monoclonal antibody. In order to determine whether loss of the IIb X IIIa complex primarily affects Ca2+ influx or Ca2+ efflux, both processes were also examined under nonsteady-state conditions. An immediate decrease in the 45Ca2+ influx rate was seen when Ca2+ was added back to platelets preincubated with EGTA at 37 degrees C. The 45Ca2+ efflux rate, on the other hand, was not immediately affected. These data suggest, therefore, that an intact IIb X IIIa complex is necessary for normal Ca2+ homeostasis in platelets.  相似文献   

17.
Cisplatin (cis-diamminedichloroplatinum II, cisPt) is especially useful in the treatment of epithelial malignancies, however, the use of cisplatin is accompanied by several toxicities including haematological toxicity. Contrary to cisplatin, selenium-cisplatin conjugate ((NH(3))(2)Pt(SeO(3)); Se-Pt) has only a slight toxicity effect on blood platelet function. In the mechanism of platinum compounds action on platelets thiols are involved. The aim of the present studies was to examine in vitro how trans-resveratrol (trans-3,4',5-trihydroxystilbene) acts on the levels of platelet glutathione (GSH) and other thiol-containing compounds and how, as an antioxidant, protecs blood platelets against the oxidative stress caused by platinum compounds (cisPt and Se-Pt). To analyse the level of thiols in human blood platelets treated with platinum compounds and with resveratrol the classical technique HPLC has been used. Blood platelets isolated by differential centrifugation of human blood were incubated (30 min, 37 degrees C) with cisPt or Se-Pt at dose of 10 microg/ml that inhibits platelet function and with resveratrol (25 microg/ml). The obtained results indicate that platinum compounds caused in platelets a decrease of both, reduced glutathione (GSH) and free thiols of cysteine (CSH) and cysteinylglycine (CGSH). The pool of these compounds in unreduced form was increased. Platinum compounds caused the reduction of platelet protein thiols. Resveratrol (after 30 min action) at the concentration of 25 microg/ml partly reduced the platinum compounds induced decrease of platelet thiols, particularly thiols in acid-soluble fraction.  相似文献   

18.
The ability of epinephrine or ADP to cause an increase in the production of phospholipase C products (diacylglycerol and inositol phosphates) in human platelets is blocked by perturbants of Na+/H+ exchange, i.e. ethylisopropylamiloride, decreased extraplatelet pH, or removal of extraplatelet Na+. These perturbants do not, however, block inositol phosphate production in response to 0.2 unit/ml thrombin, indicating that inhibition of Na+/H+ exchange does not inhibit the phospholipase C enzyme directly. Since the cyclooxygenase inhibitor indomethacin and the endoperoxide/thromboxane antagonist SQ29548 block epinephrine- and ADP-induced inositol phosphate production, it can be concluded that these agonists activate phospholipase C secondary to mobilization of arachidonic acid and production of cyclooxygenase products. This conclusion is consistent with the observation that the endoperoxide analogue U46619 causes inositol phosphate production. Furthermore, the effect of U46619 is not blocked by inhibitors of Na+/H+ exchange. The initial pool of arachidonic acid mobilized by epinephrine can be measured using negative ion gas chromatography/mass spectrometry and is sensitive to inhibition of Na+/H+ exchange. The present data suggest that epinephrine and ADP cause mobilization of a small pool of arachidonic acid by a pathway involving Na+/H+ exchange. The cyclooxygenase products derived from this pool subsequently activate phospholipase C. Since the same treatments that block epinephrine- and ADP-induced diacylglycerol and inositol phosphate production also block epinephrine- and ADP-induced dense granule secretion, it appears that activation of phospholipase C, albeit indirectly via cyclooxygenase products, may be required for epinephrine and ADP to evoke platelet secretion.  相似文献   

19.
To determine the acute action of cigarette smoking on cardiorespiratory function under stress, the immediate effects of cigarette smoking on the ventilatory, gas exchange, and cardiovascular responses to exercise were studied in nine healthy male subjects. Each subject performed an incremental exercise test to exhaustion on two separate days, one without smoking (control) and one after smoking 3 cigarettes/h for 5 h. The order of the two tests was randomized. Arterial blood gases and pH were measured during rest and all levels of exercise; CO blood levels confirmed the absorption of cigarette smoke. In addition, minute ventilation (VE), end-tidal PCO2 and PO2, O2 uptake (VO2), CO2 production, directly measured blood pressure, electrocardiogram, and heart rate (HR) were recorded every 30 s. The dead space-to-tidal volume ratio (VD/VT), maximal aerobic capacity (VO2max), and anaerobic threshold (AT) were determined from the gas exchange data. Cigarette smoking resulted in a significantly lower VO2max, AT, and VO2/HR (O2 pulse) and a significantly higher HR, pulse-pressure product, and pulse pressure (P less than 0.05) compared with the control. Additionally, a trend toward a higher VD/VT and arterial-end-tidal PCO2 difference was found during exercise after smoking. We conclude that cigarette smoking causes immediate detrimental effects on cardiovascular function during exercise, including tachycardia, increased pulse-pressure product, and impaired O2 delivery. The acute effects on respiratory function were less striking and primarily limited to abnormalities reflecting ventilation-perfusion mismatching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Human platelets were incubated with high density lipoproteins (HDL) doubly labelled with either free [14C]arachidonate/[3H]arachidonoylphosphatidylcholine or free [14C]oleate/[3H]oleoylphosphatidylcholine. Whereas [14C]arachidonate was incorporated at a 10-15-times higher rate than [14C]oleic acid, the exchange of both species of phosphatidylcholine occurred to the same extent. In both cases, free 3H-labelled fatty acids were generated during the labelling procedure, indicating phospholipase A2 hydrolysis. A redistribution of radioactivity to other phospholipids was noted after exchange of [3H]arachidonoylphosphatidylcholine only. (2) The exchange of phosphatidylcholine to platelets was confirmed using [14C]choline-labelled dipalmitoyl-and 1-palmitoyl-2-arachidonoylphosphatidylcholines. (3) Non-lytic degradation of platelet phospholipids by phospholipases revealed that free fatty acids were incorporated at the inside of the cells, whereas exchange was taking place on the platelet outer surface. However, 2-arachidonoylphosphatidylcholine displayed a more rapid movement towards the cell inside. The above findings suggest a topological asymmetry for the two pathways (acylation and exchange) of fatty acid renewal in platelets. The possible mechanisms and physiological relevance of the translocation of the external arachidonic acid pool across the membrane are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号