首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stenström CM  Holmgren E  Isaksson LA 《Gene》2001,273(2):259-265
The purine-rich Shine-Dalgarno (SD) sequence located a few bases upstream of the mRNA initiation codon supports translation initiation by complementary binding to the anti-SD in the 16S rRNA, close to its 3' end. AUG is the canonical initiation codon but the weaker UUG and GUG codons are also used for a minority of genes. The codon sequence of the downstream region (DR), including the +2 codon immediately following the initiation codon, is also important for initiation efficiency. We have studied the interplay between these three initiation determinants on gene expression in growing Escherichia coli. One optimal SD sequence (SD(+)) and one lacking any apparent complementarity to the anti-SD in 16S rRNA (SD(-)) were analyzed. The SD(+) and DR sequences affected initiation in a synergistic manner and large differences in the effects were found. The gene expression level associated with the most efficient of these DRs together with SD(-) was comparable to that of other DRs together with SD(+). The otherwise weak initiation codon UUG, but not GUG, was comparable with AUG in strength, if placed in the context of two of the DRs. The +2 codon was one, but not the only, determinant for this unexpectedly high efficiency of UUG.  相似文献   

2.
3.
4.
5.
6.
7.
Translational initiation region of bacteriophage T4 gene 25 contains three potential Shine and Dalgarno sequences: SD1, SD2 and SD3. Mutational analysis has predicted that an mRNA stem-loop structure may include SD1 and SD2, bringing the most typical sequence SD3, GAGG, to the initiation codon. Here, we report physical evidence demonstrating that previously predicted mRNA stem-loop structure indeed exists in vivo during gene 25 expression in T4-infected Escherichia coli cells. The second mRNA stem-loop structure is identified 14 nucleotides upstream of the stem-loop I, while the SD3 sequence, as well as the start codon of the gene, are proved to be within an unfolded stretch of mRNA. Phylogenetic comparison of 38 T4-like phages reveals that the T-even and some pseudoT-even phages evolve a similar structural strategy for the translation initiation of 25 , while pseudoT-even, schizoT-even and exoT-even phages use an alternative mRNA arrangement. Taken together, the results indicate that a specific mRNA fold forms the split ribosome binding site at the gene 26-25 intercistronic junction, which is highly competent in the translational initiation. We conclude that this ribosome binding site has evolved after T-even diverged from other T4-like phages. Additionally, we determine that the SD sequence GAGG is most widespread in T4.  相似文献   

8.
9.
10.
11.
12.
The complete division of labour between the reproductive and somatic cells of the green alga Volvox carteri is controlled by three types of genes. One of these is the regA gene, which controls terminal differentiation of the somatic cells. Here, we examined translational control elements located in the 5' UTR of regA, particularly the eight upstream start codons (AUGs) that have to be bypassed by the translation machinery before regA can be translated. The results of our systematic mutational, structural and functional analysis of the 5' UTR led us to conclude that a ribosome-shunting mechanism--rather than leaky scanning, ribosomal reinitiation, or internal ribosome entry site (IRES)-mediated initiation--controls the translation of regA mRNA. This mechanism, which involves dissociation of the 40S initiation complex from the message, followed by reattachment downstream, in order to bypass a secondary structure block in the mRNA, was validated by deleting the predicted ;landing site' (which prevented regA expression) and inserting a stable 64 nucleotide hairpin just upstream of this site (which did not prevent regA expression). We believe that this is the first report suggesting that translation of an mRNA in a green eukaryote is controlled by ribosome shunting.  相似文献   

13.
B Schauder  J E McCarthy 《Gene》1989,78(1):59-72
A range of translational initiation regions (TIR) was created by combining synthetic DNA fragments derived from the atpB-atpE intercistronic sequence of Escherichia coli with the cDNA sequence encoding mature human interleukin 2 (IL-2), the E. coli fnr gene, or an fnr::lacZ gene fusion. Both the overall rates of gene expression and the relative concentrations and stabilities of the corresponding mRNA species were estimated in strains bearing the constructs on plasmids. These measurements served as the basis for analyses of the relationship between the structure of the TIR and the true rates of translation that it promotes. The constructs involving the IL-2 cDNA were predicted to allow much less stable secondary structure within the TIR than those involving the N-terminal region of the fnr gene. Thus by combining one set of upstream sequences with two different types of N-terminal coding sequence, it was possible to distinguish between the respective influences of primary and secondary structure upon initiation. The data indicate that in the presence of a given Shine-Dalgarno (SD)/start codon combination, the decisive factor for translational initiation efficiency is the stability of base pairing involving, or in the vicinity of, this region. The sequences contributing to this secondary structure can be many bases upstream of the SD region and/or downstream of the start codon. There was no indication that the specific base sequence upstream of the SD region could, other than to the extent that it contributed to the local secondary structure, significantly influence the efficiency of translational initiation.  相似文献   

14.
15.
16.
17.
18.
The gene encoding ribosomal protein S14 (rps14) in Oenothera mitochondria is located upstream of the cytochrome b gene (cob). Sequence analysis of independently derived cDNA clones covering the entire rps14 coding region shows two nucleotides edited from the genomic DNA to the mRNA derived sequences by C to U modifications. A third editing event occurs four nucleotides upstream of the AUG initiation codon and improves a potential ribosome binding site. A CGG codon specifying arginine in a position conserved in evolution between chloroplasts and E. coli as a UGG tryptophan codon is not edited in any of the cDNAs analysed. An inverted repeat 3' of an unidentified open reading frame is located upstream of the rps14 gene. The inverted repeat sequence is highly conserved at analogous regions in other Oenothera mitochondrial loci.  相似文献   

19.
Translation of the leaderless Caulobacter dnaX mRNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
The expression of the Caulobacter crescentus homolog of dnaX, which in Escherichia coli encodes both the gamma and tau subunits of the DNA polymerase III holoenzyme, is subject to cell cycle control. We present evidence that the first amino acid in the predicted DnaX protein corresponds to the first codon in the mRNA transcribed from the dnaX promoter; thus, the ribosome must recognize the mRNA at a site downstream of the start codon in an unusual but not unprecedented fashion. Inserting four bases in front of the AUG at the 5' end of dnaX mRNA abolishes translation in the correct frame. The sequence upstream of the translational start site shows little homology to the canonical Shine-Dalgarno ribosome recognition sequence, but the region downstream of the start codon is complementary to a region of 16S rRNA implicated in downstream box recognition. The region downstream of the dnaX AUG, which is important for efficient translation, exhibits homology with the corresponding region from the Caulobacter hemE gene adjacent to the replication origin. The hemE gene also appears to be translated from a leaderless mRNA. Additionally, as was found for hemE, an upstream untranslated mRNA also extends into the dnaX coding sequence. We propose that translation of leaderless mRNAs may provide a mechanism by which the ribosome can distinguish between productive and nonproductive templates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号