首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multilayers of quinoprotein glucose dehydrogenase were assembled onto modified gold electrodes. As a primary modifier the bifunctional 3,3′-dithiodipropionic acid bis(N-hydroxysuccinimide ester) was chemisorbed. Glucose dehydrogenase was covalently bound to this activated electrode in a stepwise procedure. In the presence of glucose, the electrode functions as a sensor for electron acceptors. Catalytic current, as observed for p-aminophenol, was used to characterize electrode performance. The dependence of the electrode response on the number of enzyme layers showed that the transition from a kinetic to a diffusion-limited sensor is reached at 6–7 enzyme layers. The response of multilayer electrode is stable over a broad range of pH and ionic strength of the bulk solution. It also shows good stability: after 2 months, 75% of its original activity remained.  相似文献   

2.
The modelling of processes in enzyme electrodes and the comparison of experimental data to such models allows us to establish the rate limiting steps in the transduction of the analyte concentration into a sensor response and to determine the relevant mass transport and enzyme kinetic rates. These are of importance in the design and optimisation of enzyme electrodes.  相似文献   

3.
The electrochemical transient of a two-substrate enzyme electrode was studied theoretically and experimentally. Operation of such electrodes in the chronocoulometric mode leads to increased electrode sensitivity and makes possible the retrieval of useful information on transport and kinetics parameters. Digital simulation was used to solve the kinetics and transport equations and to produce the theoretical chronocoulometric response. A glucose electrode based on glucose oxidase crosslinked to different matrices was tested with air oxygen and p-benzoquinone as the cosubstrate. A computerized electrochemical system was employed for electrode potential control and data acquistion and analysis.  相似文献   

4.
An injection of saline solution is required for the measurement of vessel lumen area using a conductance catheter. The injection of room temperature saline to displace blood in a vessel inevitably involves mass and heat transport and electric field conductance. The objective of the present study is to understand the accuracy of conductance method based on the phenomena associated with the saline injection into a stenotic blood vessel. Computational fluid dynamics were performed to simulate flow and its relation to transport and electric field in a stenotic artery for two different sized conductance catheters (0.9 and 0.35 mm diameter) over a range of occlusions [56-84% cross-sectional area (CSA) stenosis]. The results suggest that the performance of conductance catheter is dependent on catheter size and severity of stenosis more significantly for 0.9 mm than for 0.35 mm catheter. Specifically, the time of detection of 95% of injected saline solution at the detection electrodes was shown to range from 0.67 to 3.7 s and 0.82 to 0.94 s for 0.9 mm and 0.35 mm catheter, respectively. The results also suggest that the detection electrodes of conductance catheter should be placed outside of flow recirculation region distal to the stenosis to minimize the detection time. Finally, the simulations show that the accuracy in distal CSA measurements, however, is not significantly altered by whether the position of detection electrodes is inside or outside of recirculation zone (error was within 12% regardless of detection electrodes position). The results were experimentally validated for one lesion geometry and the simulation results are within 8% of actual measurements. The simulation of conductance catheter injection method may lead to further optimization of device and method for accurate sizing of diseased coronary arteries, which has clinical relevance to percutaneous intervention.  相似文献   

5.
A novel amperometric biosensor based on polypyrrole (PPy) nanotube array deposited on a Pt plated nano-porous alumina substrate and its performances are described. Glucose oxidase (GOx) enzyme was selected as the model enzyme in this study. Commercially available nano-porous alumina discs were used to fabricate electrodes in order to study the feasibility of enzyme entrapment by physical adsorption. A PPy/PF6- film comprising of nanotube array was synthesized using a solution containing 0.05 M Pyrrole and 0.1 M NaPF6 at a current density of 0.3 mA/cm2 for 90 s. The immobilization was done by physical adsorption of 5 microL of GOx (from a stock solution of 2 mg/mL of 210 U/mg) on each electrode. A sensitivity of 7.4 mA cm(-2) M(-1) was observed with PPy nanotube array where the maximum tube diameter was 100 nm. A linear range of 500 microM-13 mM and a response time of about 3 s were observed with a nanotube array where the maximum tube diameter was 200 nm. The synthesized nanotube arrays were characterized by galvanostatic electrochemical technique. Calculated value of apparent Michaelis-Menten constant (Km) was 7.01 mM. The use of nano-porous template electrodes leads to an efficient enzyme loading and provides an increased surface area for sensing the reaction. These factors contribute to increase the characteristic performances of the novel biosensor.  相似文献   

6.
The effects of mass transport resistances on two-substrate immobilized enzyme systems are investigated theoretically. It is shown that the effects of mass transport resistances on the overall reaction rate are related mainly to the transport of the limiting substrate. In the absence of external mass transport resistances, the limiting substrate can be identified by knowing only the ratio of the bulk substrate concentrations, the permeability of the support to the two substrates, and the stoichiometry of the reaction. However, a combination of internal and external mass transport resistances may result in the other substrate becoming limiting. These effects are most significant when the mass transport resistances are high. Applications in the design of enzyme electrodes and chemical reactors are discussed.  相似文献   

7.
A multianalyte flow electrochemical cell (MAFEC) for bioanalysis is constructed, characterised and used for simultaneous carbohydrate analysis incorporating mediated amperometric enzyme electrodes. Although multidetection schemes can be addressed with microfabricated systems, it is demonstrated that a "meso" analytical device of low cost can give answers to traditional simultaneous multianalysis problems, being robust, and easy to construct and operate. The cell operates as a radial flow thin-layer device and can achieve mass transport controlled response for fast electrochemical reactions. When appropriate enzymatic electrodes are used the response becomes kinetically limited, but still shows a better than 5% R.S.D. for response to different sugars analysed. All the enzymatic sensors are mediated with different osmium compounds appropriate for each enzyme's mechanism (NAD or PQQ dehydrogenases) in some cases combining multienzyme sensors. All sensors were optimised so that different sugars do not produce interferences to other sensors. Matrix interferences were kept low by operating all sensors at or below 150 mV versus Ag/AgCl. The integrated system was used for the simultaneous detection of fructose, sucrose, glucose, galactose, and lactose, fully characterising the system for these analytes (sensitivity, dynamic range). Cross referenced calibration curves were used for signal treatment and interpretation and it was possible to analyse real juice and milk samples with results agreeing with the standard enzymatic methods for the same analyses with a sampling frequency of more than 100 h(-1).  相似文献   

8.
Nitrile hydratase of Brevibacterium R312--purification and characterization   总被引:6,自引:0,他引:6  
Nitrile hydratase was purified and crystallized from the crude extract of Brevibacterium R312 and found to be homogeneous by the results of disc gel electrophoresis, analytical ultracentrifuge and double diffusion in agarose. The enzyme has a molecular mass of about 85,000 Da and contains approximately 3 g atoms iron/mol enzyme. The enzyme was composed of two kinds of subunits, of which molecular masses were 26,000 Da and 27,500 Da. The concentrated solution of the enzyme had a pronounced greyish green color and exhibited a broad absorption in visible range with a absorption maxima at 712 nm. The enzyme was active toward various aliphatic nitriles.  相似文献   

9.
An oxygen-rich fill-and-flow channel biosensor has been developed for the measurement of glucose in wine. Glucose oxidase (GOD), immobilised in carbon paste (CP), was located in a well adjacent to a downstream detector electrode. When the analyte solution flows, hydrogen peroxide produced in the enzyme reaction is swept down to the detector electrode. Mineral oil and Kel-F oil (poly(chlorotrifluorethylene)) were used to prepare an enzyme layer of GOD within a CP. The hydrophobicity of the CP confined the reaction between the enzyme and its substrate to the surface of the enzyme layer. The oxidation current of hydrogen peroxide was sensitive to the enzyme loading but insensitive to mass transport variations such as flow rate. This response was, therefore, limited by the kinetics of the reaction between the enzyme and the substrate. For Kel-F oil, which can support a high concentration of dissolved oxygen, good reproducibility and greater dynamic range was obtained and the response did not decrease after degassing for 40 min with argon. Analysis of wine samples showed good agreement with the values obtained by spectrophotometric enzyme assay.  相似文献   

10.
Four forms of horseradish peroxidase (HRP) have been used to prepare peroxidase-modified gold electrodes for mediatorless detection of peroxide: native HRP, wild type recombinant HRP, and two recombinant forms containing six-His tag at the C-terminus and at the N-terminus, respectively. The adsorption of the enzyme molecules on gold was studied by direct mass measurements with electrochemical quartz crystal microbalance. All the forms of HRP formed a monolayer coverage of the enzyme on the gold surface. However, only gold electrodes with adsorbed recombinant HRP forms exhibited high and stable current response to H(2)O(2) due to its bioelectrocatalytic reduction based on direct electron transfer between gold and HRP. The sensitivity of the gold electrodes modified with recombinant HRPs was in the range of 1.4-1.5 A M(-1) cm(-2) at -50 mV versus Agmid R:AgCl. The response to H(2)O(2) in the concentration range 0.1-40 microM was not dependent on the presence of a mediator (i.e. catechol) giving strong evidence that the electrode currents are diffusion limited. Lower detection limit for H(2)O(2) detection was 10 nM at the electrodes modified with recombinant HRPs.  相似文献   

11.
Nitrile hydratase of Pseudomonas chlororaphis B23 was completely stabilized by the addition of 22 mM n-butyric acid. The enzyme was purified from extracts of methacrylamide-induced cells of P. chlororaphis B23 in eight steps. At the last step, the enzyme was crystallized by adding ammonium sulfate. The crystallized enzyme appeared to be homogeneous from analysis by polyacrylamide gel electrophoresis, analytical ultracentrifuge, and double diffusion in agarose. The enzyme has a molecular mass of about 100 kDa and consists of four subunits identical in molecular mass (approximately 25 kDa). The enzyme contained approximately 4 mol iron/mol enzyme. The concentrated solution of highly purified nitrile hydratase had a pronounced greyish green color and exhibited a broad absorption in visible range with a absorption maxima at 720 nm. A loss of enzyme activity occurred in parallel with the disappearance of the absorption in the visible range under a variety of conditions. The enzyme catalyzed stoichiometrically the hydration of nitrile to amide, and no formation of acid and ammonia were detected. The enzyme was active toward various aliphatic nitriles, particularly, nitriles with 3-6 carbon atoms, e.g. propionitrile, n-butyronitrile, acrylonitrile and cyclopropyl cyanide, served as the most suitable substrates.  相似文献   

12.
Several silicone oils have been assessed and compared as an internal source of oxygen in connection to their use as binders for carbon-paste glucose biosensors. All four poly(dimethylsiloxane) (PDMS) oils tested a dramatic increase in the oxygen capacity of carbon-paste enzyme electrodes to allow convenient biosensing under severe oxygen-deficit conditions. The resulting oxygen independence is better than that exerted by perfluorocarbon binders or that displayed by mediator-based bioelectrodes. The resistance to oxygen effects is indicated from the identical response (observed in the presence and absence of oxygen) up to 2 x 10(-2) M glucose and the slight (12%) sensitivity loss at 4 x 10(-2) M. The influence of the viscosity of the PDMS binder upon the internal oxygen supply is examined. The PDMS carbon-paste enzyme electrode displays a stable glucose response over prolonged (15 h) operation in an oxygen-free solution. On-line continuous testing indicates favorable dynamic properties with no carry-over effects over the physiological and pathophysiological range (3-12 mM glucose).  相似文献   

13.
In this article, we describe a third-generation amperometric glucose biosensor working under physiological conditions. This glucose biosensor consists of a recently discovered cellobiose dehydrogenase from the ascomycete Corynascus thermophilus (CtCDH) immobilized on different commercially available screen-printed electrodes made of carbon (SPCEs), carboxyl-functionalized single-walled carbon nanotubes (SPCE-SWCNTs), or multiwalled carbon nanotubes (SPCE-MWCNTs) by simple physical adsorption or a combination of adsorption followed by cross-linking using poly(ethyleneglycol) (400) diglycidyl ether (PEGDGE) or glutaraldehyde (GA). The CtCDH-based third-generation glucose biosensor has a linear range between 0.025 and 30 mM and a detection limit of 10 μM glucose. Biosensors based on SWCNTs showed a higher sensitivity and catalytic response than the ones functionalized with MWCNTs and the SPCEs. A drastic increase in response was observed for all three electrodes when the adsorbed enzyme was cross-linked with PEGDGE or GA. The operational stability of the biosensor was tested for 7 h by repeated injections of 50 mM glucose, and only a slight decrease in the electrochemical response was found. The selectivity of the CtCDH-based biosensor was tested on other potentially interfering carbohydrates such as mannose, galactose, sucrose, and fucose that might be present in blood. No significant analytical response from any of these compounds was observed.  相似文献   

14.
A global conformational change in the regulatory enzyme aspartate transcarbamoylase of Escherichia coli was demonstrated 20 years ago by the 3.5% decrease in the sedimentation coefficient of the enzyme upon its interaction with carbamoyl phosphate and saturating amounts of the aspartate analog succinate. This "swelling" of aspartate transcarbamoylase attributable to the T----R allosteric transition was observed also in subsequent studies when the enzyme was completely saturated with the bisubstrate analog N-(phosphonacetyl)-L-aspartate. In neither of these studies was a direct attempt made by an analysis of boundary spreading (expressed as an apparent diffusion coefficient) on partially liganded enzyme to determine whether the solution contained only T and R-state molecules, as expected for a concerted transition, or a mixture of more than two distinct conformational states. The sensitivity of boundary spreading measurements was tested with a known mixture of fully liganded wild-type enzyme (R-state) and an inactive T-state mutant that did not bind either succinate or the bisubstrate ligand. This experiment yielded broad boundaries with an apparent diffusion coefficient about 10% greater than that of T-state enzyme, due to the differential sedimentation of the two independent species. Identical boundary spreading was obtained theoretically by simulating an equimolar mixture of T and R-state aspartate transcarbamoylase. These results proved that the boundary spreading measurement was sensitive to the presence of heterogeneity. Analogous experiments with only wild-type enzyme in the presence of sub-stoichiometric amounts of the tightly bound bisubstrate ligand sufficient to promote a 1.8% decrease in sedimentation coefficient also exhibited broader boundaries, corresponding to a 10% increase in the apparent diffusion coefficient relative to the unliganded enzyme. In contrast, such broad boundaries were not observed in experiments when the weakly bound succinate was present in quantities sufficient to cause the same 1.8% decrease in sedimentation coefficient. The differences in boundary spreading observed with the two active-site ligands were accounted for by the affinities of the respective ligands for the enzyme and the transport theory of a ligand-promoted isomerization of the protein. In the presence of sub-stoichiometric levels of the tight-binding bisubstrate ligand, the dynamic equilibrium between the T and the R-state is essentially uncoupled and the species sediment at slightly different rates to give broad boundaries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The interaction between the pore-forming peptide melittin (MLT) and giant phospholipid vesicles was explored experimentally. Micromanipulation and direct optical observation of a vesicle (loaded with sucrose solution and suspended in isomolar glucose solution) enabled the monitoring of a single vesicle response to MLT. Time dependences of the vesicle size, shape and the composition of the inner solution were examined at each applied concentration of MLT (in the range from 1 to 60 microg/ml). The response varied with MLT concentration from slight perturbation of the membrane to disintegration of the vesicle. A model for MLT-vesicle interaction is proposed that explains the observed phenomena in the entire span of MLT concentrations and is consistent with deduced underlying mechanisms of MLT action: trans-membrane positioning and dimerization of MLT, the lipid flow from the outer to the inner membrane leaflet induced by MLT translocation, formation of pores and the consequent transport of small molecules through the membrane. The results of the theoretical analysis stress the role of dimers in the MLT-membrane interaction and demonstrate that the MLT-induced membrane permeability for sugar molecules in this experimental set-up depends on both MLT concentration and time.  相似文献   

16.
The interaction between the pore-forming peptide melittin (MLT) and giant phospholipid vesicles was explored experimentally. Micromanipulation and direct optical observation of a vesicle (loaded with sucrose solution and suspended in isomolar glucose solution) enabled the monitoring of a single vesicle response to MLT. Time dependences of the vesicle size, shape and the composition of the inner solution were examined at each applied concentration of MLT (in the range from 1 to 60 μg/ml). The response varied with MLT concentration from slight perturbation of the membrane to disintegration of the vesicle. A model for MLT-vesicle interaction is proposed that explains the observed phenomena in the entire span of MLT concentrations and is consistent with deduced underlying mechanisms of MLT action: trans-membrane positioning and dimerization of MLT, the lipid flow from the outer to the inner membrane leaflet induced by MLT translocation, formation of pores and the consequent transport of small molecules through the membrane. The results of the theoretical analysis stress the role of dimers in the MLT-membrane interaction and demonstrate that the MLT-induced membrane permeability for sugar molecules in this experimental set-up depends on both MLT concentration and time.  相似文献   

17.
A highly concentrated immobilized enzyme layer was formed on a small working electrode, and the behavior of the electrode as an amperometric sensor was examined. To this end, a super-hydrophobic layer was formed in an area other than the sensitive area by using polytetrafluoroethylene (PTFE) beads. A small droplet of an enzyme solution containing glucose oxidase (GOD) and bovine serum albumin (BSA) was placed on the sensitive area, concentrated by evaporation, and crosslinked with glutaraldehyde. With the same enzyme activity per unit area, the current density increased with smaller working electrodes. Also, the current density increased with higher enzyme loadings up to a limiting value. In addition, the linear range of the calibration plot was expanded to higher glucose concentrations. The enzyme electrode fabricated by the novel method was incorporated in a micro-flow channel. Compared with large enzyme electrodes with the same enzyme activity per unit area, smaller electrodes showed a significant increase in the current density and a decrease in the flow dependence. The conversion efficiency could be improved by narrowing the flow channel and increasing the number of electrodes, which was comparable with a large electrode placed in a shallow flow channel.  相似文献   

18.
A simple method of enzyme immobilization was investigated, which is useful for development of enzyme electrodes based on polyvinylferrocenium perchlorate coated Pt electrode surface. Enzymes were incorporated into the polymer matrix via ion exchange process by immersing polyvinylferrocenium perchlorate coated Pt electrode in enzyme solution for several times. Choline and acetylcholine enzyme electrodes were developed by co-immobilizing choline oxidase and acetylcholinesterase in polyvinylferrocenium perchlorate matrix coated on a Pt electrode surface. The amperometric responses of the enzyme electrodes were measured at +0.70 V versus SCE, which was due to the electrooxidation of enzymatically produced H2O2. The effects of the thickness of the polymeric film, pH, temperature, substrate and enzyme concentrations on the response of the enzyme electrode were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. The steady-state current of these enzyme electrodes were reproducible within +/-5.0% of the relative error. Response time was found to be 30-50s and upper limit of the linear working portions was found to be 1.2mM choline and acetylcholine concentrations in which produced detectable currents were 1.0 x 10(-6)M substrate concentrations. The apparent Michaelis-Menten constant and the activation energy of this immobilized enzyme system were found to be 1.74 mM acetylcholine and 14.9 kJ mol(-1), respectively. The effects of interferents and stability of the enzyme electrodes were also investigated.  相似文献   

19.
Urease, immobilised on interdigitated gold electrodes, is employed as a model enzyme for characterisation and optimisation of a.c. conductimetric sensors. The sensors' response is measured over a frequency range of 20 Hz to 300 kHz and an optimum operating frequency established. The activity of the urease, both in solution and immobilised states, is investigated and Km values obtained. The effect of method of immobilisation and enzyme loading on the sensors' performance are studied and urease electrodes are characterised as a function of temperature, pH and electrolyte concentration. An important finding, particularly for conductimetric sensors designed for clinical use, is that proper consideration of the effects of electrode polarisation must be taken into account in order to maintain high sensor sensitivity at physiological electrolyte concentrations. Measurements of urea concentration in untreated serum are described.  相似文献   

20.
《Biosensors》1987,3(3):161-186
This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the dynamic range as well as the influence of the sample buffer capacity have not been solved. As a possible solution we introduce a coulometric system that compensates for the analyte buffer capacity. If the pH in the immobilized enzyme layer is thus controlled, the resulting pH-static enzyme sensor has an output that is independent of the sample pH and buffer capacity and has an expanded linear range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号