首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Raf family of serine/threonine protein kinases couple growth factor receptor stimulation to mitogen activated protein kinase activation, but their own regulation is poorly understood. Using phospho-specific antisera, we show that activated Raf-1 is phosphorylated on S338 and Y341. Expression of Raf-1 with oncogenic Ras gives predominantly S338 phosphorylation, whereas activated Src gives predominantly Y341 phosphorylation. Phosphorylation at both sites is maximal only when both oncogenic Ras and activated Src are present. Raf-1 that cannot interact with Ras-GTP is not phosphorylated, showing that phosphorylation is Ras dependent, presumably occurring at the plasma membrane. Mutations which prevent phosphorylation at either site block Raf-1 activation and maximal activity is seen only when both are phosphorylated. Mutations at S339 or Y340 do not block Raf-1 activation. While B-Raf lacks a tyrosine phosphorylation site equivalent to Y341 of Raf-1, S445 of B-Raf is equivalent to S338 of Raf-1. Phosphorylation of S445 is constitutive and is not stimulated by oncogenic Ras. However, S445 phosphorylation still contributes to B-Raf activation by elevating basal and consequently Ras-stimulated activity. Thus, there are considerable differences between the activation of the Raf proteins; Ras-GTP mediates two phosphorylation events required for Raf-1 activation but does not regulate such events for B-Raf.  相似文献   

2.
Activation of Raf-1 by Ras requires recruitment to the membrane as well as additional phosphorylations, including phosphorylation at serine 338 (Ser-338) and tyrosine 341 (Tyr-341). In this study we show that Tyr-341 participates in the recruitment of Raf-1 to specialized membrane domains called "rafts," which are required for Raf-1 to be phosphorylated on Ser-338. Raf-1 is also thought to be recruited to the small G protein Rap1 upon GTP loading of Rap1. However, this does not result in Raf-1 activation. We propose that this is because Raf-1 is not phosphorylated on Tyr-341 upon recruitment to Rap1. Redirecting Rap1 to Ras-containing membranes or mimicking Tyr-341 phosphorylation of Raf-1 by mutation converts Rap1 into an activator of Raf-1. In contrast to Raf-1, B-Raf is activated by Rap1. We suggest that this is because B-Raf activation is independent of tyrosine phosphorylation. Moreover, mutants that render B-Raf dependent on tyrosine phosphorylation are no longer activated by Rap1.  相似文献   

3.
Many receptors coupled to the pertussis toxin-sensitive G(i/o) proteins stimulate the mitogen-activated protein kinase (MAPK) pathway. The role of the alpha chains of these G proteins in MAPK activation is poorly understood. We investigated the ability of Galpha(o) to regulate MAPK activity by transient expression of the activated mutant Galpha(o)-Q205L in Chinese hamster ovary cells. Galpha(o)-Q205L was not sufficient to activate MAPK but greatly enhanced the response to the epidermal growth factor (EGF) receptor. This effect was not associated with changes in the state of tyrosine phosphorylation of the EGF receptor. Galpha(o)-Q205L also potentiated MAPK stimulation by activated Ras. In Chinese hamster ovary cells, EGF receptors activate B-Raf but not Raf-1 or A-Raf. We found that expression of activated Galpha(o) stimulated B-Raf activity independently of the activation of the EGF receptor or Ras. Inactivation of protein kinase C and inhibition of phosphatidylinositol-3 kinase abolished both B-Raf activation and EGF receptor-dependent MAPK stimulation by Galpha(o). Moreover, Galpha(o)-Q205L failed to affect MAPK activation by fibroblast growth factor receptors, which stimulate Raf-1 and A-Raf but not B-Raf activity. These results suggest that Galpha(o) can regulate the MAPK pathway by activating B-Raf through a mechanism that requires a concomitant signal from tyrosine kinase receptors or Ras to efficiently stimulate MAPK activity. Further experiments showed that receptor-mediated activation of Galpha(o) caused a B-Raf response similar to that observed after expression of the mutant subunit. The finding that Galpha(o) induces Ras-independent and protein kinase C- and phosphatidylinositol-3 kinase-dependent activation of B-Raf and conditionally stimulates MAPK activity provides direct evidence for intracellular signals connecting this G protein subunit to the MAPK pathway.  相似文献   

4.
The serine/threonine kinase Raf-1 functions downstream from Ras to activate mitogen-activated protein kinase kinase, but the mechanisms of Raf-1 activation are incompletely understood. To dissect these mechanisms, wild-type and mutant Raf-1 proteins were studied in an in vitro system with purified plasma membranes from v-Ras- and v-Src-transformed cells (transformed membranes). Wild-type (His)6- and FLAG-Raf-1 were activated in a Ras- and ATP-dependent manner by transformed membranes; however, Raf-1 proteins that are kinase defective (K375M), that lack an in vivo site(s) of regulatory tyrosine (YY340/341FF) or constitutive serine (S621A) phosphorylation, that do not bind Ras (R89L), or that lack an intact zinc finger (CC165/168SS) were not. Raf-1 proteins lacking putative regulatory sites for an unidentified kinase (S259A) or protein kinase C (S499A) were activated but with apparently reduced efficiency. The kinase(s) responsible for activation by Ras or Src may reside in the plasma membrane, since GTP loading of plasma membranes from quiescent NIH 3T3 cells (parental membranes) induced de novo capacity to activate Raf-1. Wild-type Raf-1, possessing only basal activity, was not activated by parental membranes in the absence of GTP loading. In contrast, Raf-1 Y340D, possessing significant activity, was, surprisingly, stimulated by parental membranes in a Ras-independent manner. The results suggest that activation of Raf-1 by phosphorylation may be permissive for further modulation by another membrane factor, such as a lipid. A factor(s) extracted with methanol-chloroform from transformed membranes or membranes from Sf9 cells coexpressing Ras and SrcY527F significantly enhanced the activity of Raf-1 Y340D or active Raf-1 but not that of inactive Raf-1. Our findings suggest a model for activation of Raf-1, wherein (i) Raf-1 associates with Ras-GTP, (ii) Raf-1 is activated by tyrosine and/or serine phosphorylation, and (iii) Raf-1 activity is further increased by a membrane cofactor.  相似文献   

5.
The Raf-1 serine/threonine protein kinase requires phosphorylation of the serine at position 338 (S338) for activation. Ras is required to recruit Raf-1 to the plasma membrane, which is where S338 phosphorylation occurs. The recent suggestion that Pak3 could stimulate Raf-1 activity by directly phosphorylating S338 through a Ras/phosphatidylinositol 3-kinase (Pl3-K)/-Cdc42-dependent pathway has attracted much attention. Using a phospho-specific antibody to S338, we have reexamined this model. Using LY294002 and wortmannin, inhibitors of Pl3-K, we find that growth factor-mediated S338 phosphorylation still occurs, even when Pl3-K activity is completely blocked. Although high concentrations of LY294002 and wortmannin did suppress S338 phosphorylation, they also suppressed Ras activation. Additionally, we show that Pak3 is not activated under conditions where S338 is phosphorylated, but when Pak3 is strongly activated, by coexpression with V12Cdc42 or by mutations that make it independent of Cdc42, it did stimulate S338 phosphorylation. However, this occurred in the cytosol and did not stimulate Raf-1 kinase activity. The inability of Pak3 to activate Raf-1 was not due to an inability to stimulate phosphorylation of the tyrosine at position 341 but may be due to its inability to recruit Raf-1 to the plasma membrane. Taken together, our data show that growth factor-stimulated Raf-1 activity is independent of Pl3-K activity and argue against Pak3 being a physiological mediator of S338 phosphorylation in growth factor-stimulated cells.  相似文献   

6.
Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.  相似文献   

7.
A central feature of signal transduction downstream of both receptor and oncogenic tyrosine kinases is the Ras-dependent activation of a protein kinase cascade consisting of Raf-1, Mek (MAP kinase kinase) and ERKs (MAP kinases). To study the role of tyrosine kinase activity in the activation of Raf-1, we have examined the properties of p74Raf-1 and oncogenic Src that are necessary for activation of p74Raf-1. We show that in mammalian cells activation of p74Raf-1 by oncogenic Src requires pp60Src to be myristoylated and the ability of p74Raf-1 to interact with p21Ras-GTP. The Ras/Raf interaction is required for p21Ras-GTP to bring p74Raf-1 to the plasma membrane for phosphorylation at tyrosine 340 or 341, probably by membrane-bound pp60Src. When oncogenic Src is expressed with Raf-1, p74Raf-1 is activated 5-fold; however, when co-expressed with oncogenic Ras and Src, Raf-1 is activated 25-fold and this is associated with a further 3-fold increase in tyrosine phosphorylation. Thus, p21Ras-GTP is the limiting component in bringing p74Raf-1 to the plasma membrane for tyrosine phosphorylation. Using mutants of Raf-1 at Tyr340/341, we show that in addition to tyrosine phosphorylation at these sites, there is an additional activation step resulting from p21Ras-GTP recruiting p74Raf-1 to the plasma membrane. Thus, the role of Ras in Raf-1 activation is to bring p74Raf-1 to the plasma membrane for at least two different activation steps.  相似文献   

8.
We have investigated the role that S259 phosphorylation, S621 phosphorylation, and 14-3-3 binding play in regulating Raf-1 activity. We show that 14-3-3 binding, rather than Raf-1 phosphorylation, is required for the correct regulation of kinase activity. Phosphorylation of S621 is not required for activity, but 14-3-3 binding is essential. When 14-3-3 binding to conserved region 2 (CR2) was disrupted, Raf-1 basal kinase activity was elevated and it could be further activated by (V12,G37)Ras, (V23)TC21, and (V38)R-Ras. Disruption of 14-3-3 binding at CR2 did not recover binding of Raf-1 to (V12,G37)Ras but allowed more efficient recruitment of Raf-1 to the plasma membrane and stimulated its phosphorylation on S338. Finally, (V12)Ras, but not (V12,G37)Ras, displaced 14-3-3 from full-length Raf-1 and the Raf-1 bound to Ras. GTP was still phosphorylated on S259. Our data suggest that stable association of Raf-1 with the plasma membrane requires Ras-mediated displacement of 14-3-3 from CR2. Small G proteins that cannot displace 14-3-3 fail to recruit Raf-1 to the membrane efficiently and so fail to stimulate kinase activity.  相似文献   

9.
Mechanism of inhibition of Raf-1 by protein kinase A.   总被引:31,自引:14,他引:17       下载免费PDF全文
The cytoplasmic Raf-1 kinase is essential for mitogenic signalling by growth factors, which couple to tyrosine kinases, and by tumor-promoting phorbol esters such as 12-O-tetradecanoylphorbol-13-acetate, which activate protein kinase C (PKC). Signalling by the Raf-1 kinase can be blocked by activation of the cyclic AMP (cAMP)-dependent protein kinase A (PKA). The molecular mechanism of this inhibition is not precisely known but has been suggested to involve attenuation of Raf-1 binding to Ras. Using purified proteins, we show that in addition to weakening the interaction of Raf-1 with Ras, PKA can inhibit Raf-1 function directly via phosphorylation of the Raf-1 kinase domain. Phosphorylation by PKA interferes with the activation of Raf-1 by either PKC alpha or the tyrosine kinase Lck and even can downregulate the kinase activity of Raf-1 previously activated by PKC alpha or amino-terminal truncation. This type of inhibition can be dissociated from the ability of Raf-1 to associate with Ras, since (i) the isolated Raf-1 kinase domain, which lacks the Ras binding domain, is still susceptible to inhibition by PKA, (ii) phosphorylation of Raf-1 by PKC alpha alleviates the PKA-induced reduction of Ras binding but does not prevent the downregulation of Raf-1 kinase activity by PKA and (iii) cAMP agonists antagonize transformation by v-Raf, which is Ras independent.  相似文献   

10.
Raf-1 and B-Raf promote protein kinase C theta interaction with BAD   总被引:1,自引:0,他引:1  
PKCtheta regulates the proliferation, survival and differentiation of T-cells. Here we show that PKCtheta interacts with Raf-1 and B-Raf kinases. Raf-1 enhanced the kinase activity of associated PKCtheta, while PKCtheta reduced the catalytic activity of associated Raf-1. In contrast, B-Raf binding did not affect PKCtheta kinase activity, and PKCtheta did not change B-Raf activity. Coexpression of mutationally activated Raf-1 in cells enhanced the phosphorylation of T538 in the PKCtheta activation loop. PKCtheta and Raf cooperated in terms of binding to BAD, a pro-apoptotic Bcl-2 family protein that is inactivated by phosphorylation. While neither Raf-1 nor B-Raf could phosphorylate BAD, they enhanced the ability of PKCtheta to interact with BAD and to phosphorylate BAD in vitro and in vivo, suggesting a new role for Raf proteins in T-cells by targeting PKCtheta to interact with and phosphorylate BAD.  相似文献   

11.
The Ras-Raf-MEK-extracellular signal-regulated kinase (ERK) pathway participates in the control of many fundamental cellular processes including proliferation, survival, and differentiation. The pathway is deregulated in up to 30% of human cancers, often due to mutations in Ras and the B-Raf isoform. Raf-1 and B-Raf can form heterodimers, and this may be important for cellular transformation. Here, we have analyzed the biochemical and biological properties of Raf-1/B-Raf heterodimers. Isolated Raf-1/B-Raf heterodimers possessed a highly increased kinase activity compared to the respective homodimers or monomers. Heterodimers between wild-type Raf-1 and B-Raf mutants with low or no kinase activity still displayed elevated kinase activity, as did heterodimers between wild-type B-Raf and kinase-negative Raf-1. In contrast, heterodimers containing both kinase-negative Raf-1 and kinase-negative B-Raf were completely inactive, suggesting that the kinase activity of the heterodimer specifically originates from Raf and that either kinase-competent Raf isoform is sufficient to confer high catalytic activity to the heterodimer. In cell lines, Raf-1/B-Raf heterodimers were found at low levels. Heterodimerization was enhanced by 14-3-3 proteins and by mitogens independently of ERK. However, ERK-induced phosphorylation of B-Raf on T753 promoted the disassembly of Raf heterodimers, and the mutation of T753 prolonged growth factor-induced heterodimerization. The B-Raf T753A mutant enhanced differentiation of PC12 cells, which was previously shown to be dependent on sustained ERK signaling. Fine mapping of the interaction sites by peptide arrays suggested a complex mode of interaction involving multiple contact sites with a main Raf-1 binding site in B-Raf encompassing T753. In summary, our data suggest that Raf-1/B-Raf heterodimerization occurs as part of the physiological activation process and that the heterodimer has distinct biochemical properties that may be important for the regulation of some biological processes.  相似文献   

12.
Insulin activates the Raf-1 protein kinase   总被引:9,自引:0,他引:9  
Several growth factors and mitogens have been shown to activate the proto-oncogene product Raf-1 protein kinase in murine fibroblasts, apparently through a direct agonist-stimulated tyrosine phosphorylation of the Raf-1 protein. We investigated the possibility that insulin could also activate the Raf-1 kinase, since its receptor also contains an intrinsic insulin-activated protein tyrosine kinase activity. In several cell lines expressing relatively large numbers of insulin receptors, insulin rapidly stimulated the phosphorylation of immunoreactive Raf-1 protein. In H35 cells, a line of well differentiated rat hepatoma cells, the effect of insulin was maximal by 6 min and at 7 nM insulin and occurred normally in cells virtually completely depleted of protein kinase C activity. The insulin-stimulated increase in Raf-1 protein phosphorylation occurred concurrently with a 3-fold increase in Raf-1 protein kinase activity. However, phosphoamino acid analysis showed that only phosphoserine and a trace of phosphothreonine were present in the Raf-1 protein after insulin stimulation of the cells. This was true even when investigated at shorter times (4 min) after insulin stimulation and despite the use of phosphotyrosine phosphatase inhibitors. We conclude that insulin can rapidly activate the Raf-1 kinase in some insulin-sensitive cell types but that this activation probably occurs through a mechanism distinct from direct phosphorylation of the Raf-1 protein by the insulin receptor protein tyrosine kinase.  相似文献   

13.
To be fully activated at the plasma membrane, Raf-1 must establish two distinct modes of interactions with Ras, one through its Ras-binding domain and the other through its cysteine-rich domain (CRD). The Ras homologue Rap1A is incapable of activating Raf-1 and even antagonizes Ras-dependent activation of Raf-1. We proposed previously that this property of Rap1A may be attributable to its greatly enhanced interaction with Raf-1 CRD compared to Ras. On the other hand, B-Raf, another Raf family member, is activatable by both Ras and Rap1A. When interactions with Ras and Rap1A were measured, B-Raf CRD did not exhibit the enhanced interaction with Rap1A, suggesting that the strength of interaction at CRDs may account for the differential action of Rap1A on Raf-1 and B-Raf. The importance of the interaction at the CRD is further supported by a domain-shuffling experiment between Raf-1 and B-Raf, which clearly indicated that the nature of CRD determines the specificity of response to Rap1A: Raf-1, whose CRD is replaced by B-Raf CRD, became activatable by Rap1A, whereas B-Raf, whose CRD is replaced by Raf-1 CRD, lost its response to Rap1A. Finally, a B-Raf CRD mutant whose interaction with Rap1A is selectively enhanced was isolated and found to possess the double mutation K252E/M278T. B-Raf carrying this mutation was not activated by Rap1A but retained its response to Ras. These results indicate that the strength of interaction with Ras and Rap1A at its CRD may be a critical determinant of regulation of the Raf kinase activity by the Ras family small GTPases.  相似文献   

14.
TC21 causes transformation by Raf-independent signaling pathways.   总被引:2,自引:1,他引:1       下载免费PDF全文
Although the Ras-related protein TC21/R-Ras2 has only 55% amino acid identity with Ras proteins, mutated forms of TC21 exhibit the same potent transforming activity as constitutively activated forms of Ras. Therefore, like Ras, TC21 may activate signaling pathways that control normal cell growth and differentiation. To address this possibility, we determined if regulators and effectors of Ras are also important for controlling TC21 activity. First, we determined that Ras guanine nucleotide exchange factors (SOS1 and RasGRF/CDC25) synergistically enhanced wild-type TC21 activity in vivo and that Ras GTPase-activating proteins (GAPs; p120-GAP and NF1-GAP) stimulated wild-type TC21 GTP hydrolysis in vitro. Thus, extracellular signals that activate Ras via SOS1 activation may cause coordinate activation of Ras and TC21. Second, we determined if Raf kinases were effectors for TC21 transformation. Unexpectedly, yeast two-hybrid binding analyses showed that although both Ras and TC21 could interact with the isolated Ras-binding domain of Raf-1, only Ras interacted with full-length Raf-1, A-Raf, or B-Raf. Consistent with this observation, we found that Ras- but not TC21-transformed NIH 3T3 cells possessed constitutively elevated Raf-1 and B-Raf kinase activity. Thus, Raf kinases are effectors for Ras, but not TC21, signaling and transformation. We conclude that common upstream signals cause activation of Ras and TC21, but activated TC21 controls cell growth via distinct Raf-independent downstream signaling pathways.  相似文献   

15.
Raf kinases are involved in regulating cellular signal transduction pathways in response to a wide variety of external stimuli. Upstream signals generate activated Ras-GTP, important for the relocalization of Raf kinases to the membrane. Upon full activation, Raf kinases phosphorylate and activate downstream kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. The Raf family of kinases has three members, Raf-1, B-Raf, and A-Raf. The ability of Raf-1 and B-Raf to bind phosphatidylserine (PS) and phosphatidic acid (PA) has been show to facilitate Raf membrane associations and regulate Raf kinase activity. We have characterized the lipid binding properties of A-Raf, as well as further characterized those of Raf-1. Both A-Raf and Raf-1 were found to bind to 3-, 4-, and 5-monophosphorylated phosphoinositides [PI(3)P, PI(4)P, and PI(5)P] as well as phosphatidylinositol 3,5-bisphosphate [PI(3,5)P(2)]. In addition, A-Raf also bound specifically to phosphatidylinositol 4,5- and 3,4-bisphosphates [PI(4,5)P(2) and PI(3,4)P(2)] and to PA. A mutational analysis of A-Raf localized the PI(4,5)P(2) binding site to two basic residues (K50 and R52) within the Ras binding domain. Additionally, an A-Raf mutant lacking the first 199 residues [i.e., the entire conserved region 1 (CR1) domain] bound the same phospholipids as full-length Raf-1. This suggests that a second region of A-Raf between amino acids 200 and 606 was responsible for interactions with the monophosphorylated PIs and PI(3,5)P(2). These results raise the possibility that Raf-1 and A-Raf bind to specific phosphoinositides as a mechanism to localize them to particular membrane microdomains rich in these phospholipids. Moreover, the differences in their lipid binding profiles could contribute to their proposed isoform-specific Raf functions.  相似文献   

16.
Raf-1 is a regulator of cellular proliferation, differentiation, and apoptosis. Activation of the Raf-1 kinase activity is tightly regulated and involves targeting to the membrane by Ras and phosphorylation by various kinases, including the tyrosine kinase Src. Here we demonstrate that the connector enhancer of Ksr1, CNK1, mediates Src-dependent tyrosine phosphorylation and activation of Raf-1. CNK1 binds preactivated Raf-1 and activated Src and forms a trimeric complex. CNK1 regulates the activation of Raf-1 by Src in a concentration-dependent manner typical for a scaffold protein. Down-regulation of endogenously expressed CNK1 by small inhibitory RNA interferes with Src-dependent activation of ERK. Thus, CNK1 allows cross-talk between Src and Raf-1 and is essential for the full activation of Raf-1.  相似文献   

17.
Raf-1 is a key protein involved in the transmission of developmental and proliferative signals generated by receptor and nonreceptor tyrosine kinases. Biochemical and genetic studies have demonstrated that Raf-1 functions downstream of activated tyrosine kinases and Ras and upstream of mitogen-activated protein kinase (MAPK) and MAPK kinase (MKK or MEK) in many signaling pathways. A major objective of our laboratory has been to determine how Raf-1 becomes activated in response to signaling events. Using mammalian, baculovirus, and Xenopus systems, we have examined the roles that phosphorylation and protein-protein interactions play in regulating the biological and biochemical activity of Raf-1. Our studies have provided evidence that the activity of Raf-1 can be modulated by both Ras-dependent and Ras-independent pathways. Recently, we reported that Arg89 of Raf-1 is a residue required for the association of Raf-1 and Ras. Mutation of this residue disrupted interaction with Ras and prevented Ras-mediated, but not protein kinase C-or tyrosine kinase-mediated, enzymatic activation of Raf-1 in the baculovirus expression system. Further analysis of this mutant demonstrated that kinase-defective Raf-1 proteins interfere with the propagation of proliferative and developmental signals by binding to Ras and blocking Ras function. Our findings have also shown that phosphorylation events play a role in regulating Raf-1. We have identified sites of in vivo phosphorylation that positively and negatively alter the biological and enzymatic activity of Raf-1. In addition, we have found that some of these phosphorylation sites are involved in mediating the interaction of Raf-1 with potential activators (Fyn and Src) and with other cellular proteins (14-3-3). Results from our work suggest that Raf-1 is regulated at multiple levels by several distinct mechanisms. © 1995 wiley-Liss, Inc.  相似文献   

18.
Activation of the protein kinase Raf-1 is a complex process involving association with the GTP-bound form of Ras (Ras-GTP), membrane translocation and both serine/threonine and tyrosine phosphorylation (reviewed in [1]). We have reported previously that p21-activated kinase 3 (Pak3) upregulates Raf-1 through direct phosphorylation on Ser338 [2]. Here, we investigated the origin of the signal for Pak-mediated Raf-1 activation by examining the role of the small GTPase Cdc42, Rac and Ras, and of phosphatidylinositol (PI) 3-kinase. Pak3 acted synergistically with either Cdc42V12 or Rac1V12 to stimulate the activities of Raf-1, Raf-CX, a membrane-localized Raf-1 mutant, and Raf-1 mutants defective in Ras binding. Raf-1 mutants defective in Ras binding were also readily activated by RasV12. This indirect activation of Raf-1 by Ras was blocked by a dominant-negative mutant of Pak, implicating an alternative Ras effector pathway in Pak-mediated Raf-1 activation. Subsequently, we show that Pak-mediated Raf-1 activation is upregulated by both RasV12C40, a selective activator of PI 3-kinase, and p110-CX, a constitutively active PI 3-kinase. In addition, p85Delta, a mutant of the PI 3-kinase regulatory subunit, inhibited the stimulated activity of Raf-1. Pharmacological inhibitors of PI 3-kinase also blocked both activation and Ser338 phosphorylation of Raf-1 induced by epidermal growth factor (EGF). Thus, Raf-1 activation by Ras is achieved through a combination of both physical interaction and indirect mechanisms involving the activation of a second Ras effector, PI 3-kinase, which directs Pak-mediated regulatory phosphorylation of Raf-1.  相似文献   

19.
The BCR/ABL fusion tyrosine kinase activates various intracellular signaling pathways, thus causing chronic myeloid leukemia (CML). Here we demonstrate that the inducible expression of BCR/ABL in a murine hematopoietic cell line, TonB210, leads to the activation of the Ras family small GTPase Rap1, which is inhibited by the ABL kinase inhibitor imatinib. The Rap1 activity in a CML cell line, K562, was also inhibited by imatinib. Inhibition of Rap1 activation by a dominant negative mutant of Rap1, Rap1-N17, or SPA-1 inhibited the BCR/ABL-induced activation of Elk-1. BCR/ABL also activated in a kinase activity-dependent manner the B-Raf kinase, which is an effector molecule of Rap1 and a potent activator of the MEK/Erk/Elk-1 signaling pathway. Together, these data suggest that, in addition to the well-established Ras/Raf-1 pathway, BCR/ABL activates the alternative signaling pathway involving Rap1 and B-Raf to activate Erk, which may play important roles in leukemogenesis.  相似文献   

20.
The serine/threonine kinase activity of the Raf-1 proto-oncogene product is stimulated by the activation of many tyrosine kinases, including growth factor receptors and pp60v-src. Recent studies of growth factor signal transduction pathways demonstrate that Raf-1 functions downstream of activated tyrosine kinases and p21ras and upstream of mitogen-activated protein kinase. However, coexpression of both activated tyrosine kinases and p21ras is required for maximal activation of Raf-1 in the baculovirus-Sf9 expression system. In this study, we investigated the role of tyrosine kinases and tyrosine phosphorylation in the regulation of Raf-1 activity. Using the baculovirus-Sf9 expression system, we identified Tyr-340 and Tyr-341 as the major tyrosine phosphorylation sites of Raf-1 when coexpressed with activated tyrosine kinases. Introduction of a negatively charged residue that may mimic the effect of phosphorylation at these sites activated the catalytic activity of Raf-1 and generated proteins that could transform BALB/3T3 cells and induce the meiotic maturation of Xenopus oocytes. In contrast, substitution of noncharged residues that were unable to be phosphorylated produced a protein that could not be enzymatically activated by tyrosine kinases and that could block the meiotic maturation of oocytes induced by components of the receptor tyrosine kinase pathway. These findings demonstrate that maturation of the tyrosine phosphorylation sites can dramatically alter the function of Raf-1. In addition, this is the first report that a transforming Raf-1 protein can be generated by a single amino acid substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号