首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interactions of eight piperidine derivatives with nicotinic receptor complexes fromTorpedo californica electric organ were studied using [125I]alpha-bungarotoxin ([125I]BGT) as a probe for the acetylcholine binding site and [3H]perhydrohistrionicotoxin ([3H]H12-HTX) as a probe for a site associated with the receptor-gated ion channel.Cis- andtrans-2-methyl-6-n-undecanyl piperidines (MUP), major constituents of fire ant venom, had a high-affinity for [3H]H12-HTX binding sites (Ki=0.08–0.24 M), but had no affect on receptor binding. MUP affinity for [3H]H12-HTX binding sites was approximately doubled in the presence of 1 M carbamylcholine. Introduction of a 2-hydroxyl group to the undecanyl side channel had little effect on activity of the alkaloid. The analog 2,6- (but not 3,5-) dimethylpiperidine was a moderately active inhibitor of [3H]H12-HTX binding (K i-8.8 M). 2-Methylpiperidine was considerably less active (K i=600 M), although it was more potent than either 3- or 4-methylpiperidine. The affinities of 2,6-dimethylpiperidine and 2-methylpiperidine for [3H]H12-HTX binding sites were decreased in the presence of 1 M carbamylcholine. Carbamylcholine affinity for the receptor was increased by up to 7 fold in the presence of 10 and 32 M MUP, but was decreased in the presence of 2,6-dimethylpiperidine and 2-methylpiperidine. Thecis- andtrans-isomers of MUP were equipotent in producing each of its effects. In these actions, MUP resembles a variety of other compounds derived from 2,6-disubstituted piperidines, including histrionicotoxins, gephyrotoxins and pumiliotoxins. These studies establish the importance of alkyl substitutions in theortho position of the piperidine ring in conferring ion channel specificity, and the importance of substantial alkyl side chains in conferring the ability of channel blockers to stabilize the nicotinic receptor complex in high affinity, desensitized conformations.  相似文献   

2.
The lipid requirements of the Torpedo californica nicotinic acetylcholine receptor (nAChR) were assessed by reconstituting purified receptors into lipid vesicles of defined composition and by using photolabeling with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) to determine functionality. Earlier studies demonstrated that nAChRs reconstituted into membranes containing phosphatidylcholine (PC), the anionic lipid phosphatidic acid (PA), and cholesterol (CH) are particularly effective at stabilizing the nAChR in the resting (closed) state that is capable of undergoing agonist-induced conformational transitions (i.e., functionality). The present studies demonstrate that (1) there is no obligatory requirement for PC, (2) increasing the CH content serves to increase the degree to which nAChRs are stabilized in the resting state, and this effect saturates at approximately 35 mol % (molar lipid percentage), and (3) the effect of increasing levels of PA saturates at approximately 12 mol % and in the absence of PA nAChRs are stabilized in the desensitized state (i.e., nonfunctional). Native Torpedo membranes contain approximately 35 mol % CH but less than 1 mol % PA, suggesting that other anionic lipids may substitute for PA. We report that (1) phosphatidylserine (PS) and phosphatidylinositol (PI), anionic lipids that are abundant in native Torpedo membranes, also stabilize the receptor in the resting state although with reduced efficacy (approximately 50-60%) compared to PA, and (2) for nAChRs reconstituted into PA/CH membranes at different lipid-protein molar ratios, receptor functionality decreases rapidly below approximately 65 lipids per receptor. Collectively, these results are consistent with a functional requirement of a single shell of lipids surrounding the nAChR and specific anionic lipid- and sterol (CH)-protein interactions.  相似文献   

3.
The nicotinic acetylcholine receptor (nAChR) from Torpedo electric organ is a pentamer of homologous subunits. This receptor is generally thought to carry two high affinity sites for agonists under equilibrium conditions. Here we demonstrate directly that each Torpedo nAChR carries at least four binding sites for the potent neuronal nAChR agonist, epibatidine, i.e., twice as many sites as for α-bungarotoxin. Using radiolabeled ligand binding techniques, we show that the binding of [3H]-(±)-epibatidine is heterogeneous and is characterized by two classes of binding sites with equilibrium dissociation constants of about 15 nM and 1 μM. These classes of sites exist in approximately equal numbers and all [3H]-(±)-epibatidine binding is competitively displaced by acetylcholine, suberyldicholine and d-tubocurarine. These results provide further evidence for the complexity of agonist binding to the nAChR and underscore the difficulties in determining simple relationships between site occupancy and functional responses.  相似文献   

4.
Song XZ  Andreeva IE  Pedersen SE 《Biochemistry》2003,42(14):4197-4207
Fluorescent energy transfer measurements of dansyl-C6-choline binding to the nicotinic acetylcholine receptor (AChR) from Torpedo californica were used to determine binding characteristics of the alpha gamma and alpha delta binding sites. Equilibrium binding measurements show that the alpha gamma site has a lower fluorescence than the alpha delta site; the emission difference is due to differences in the intrinsic fluorescence of the bound fluorophores rather than differences in energy transfer at the two sites. Stopped-flow fluorescence kinetics showed that dissociation of dansyl-C6-choline from the AChR in the desensitized conformation occurs 5-10-fold faster from the alpha gamma site than from the alpha delta site. The dissociation rates are robust for distinct protein preparations, in the presence of noncompetitive antagonists, and over a broad range of ionic strengths. Equilibrium fluorescent binding measurements show that dansyl-C6-choline binds with higher affinity to the alpha delta site (K = 3 nM) than to the alpha gamma site (K = 9 nM) when the AChR is desensitized. Similar affinity differences were observed for acetylcholine itself. The distinct dissociation rates permit the extent of desensitization to be measured at each site during the time course of binding. This sequential mixing method of measuring the desensitized state population at each agonist site can be applied to study the mechanism of AChR activation and subsequent desensitization in detail.  相似文献   

5.
6.
M P Blanton  H H Wang 《Biochemistry》1990,29(5):1186-1194
A photoactivatable analogue of phosphatidylserine, 125I-labeled 4-azidosalicylic acid-phosphatidylserine (125I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin (a crude soybean lipid extract) vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the alpha subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR alpha subunit that incorporated 125I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the alpha subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the alpha subunit incorporated little or no detectable amount of probe.  相似文献   

7.
M P Blanton  J B Cohen 《Biochemistry》1992,31(15):3738-3750
To identify regions of the Torpedo nicotinic acetylcholine receptor (AchR) interacting with membrane lipid, we have used 1-azidopyrene (1-AP) as a fluorescent, photoactivatable hydrophobic probe. For AchR-rich membranes equilibrated with 1-AP, irradiation at 365 nm resulted in covalent incorporation in all four AchR subunits with each of the subunits incorporating approximately equal amounts of label. To identify the regions of the AchR subunits that incorporated 1-AP, subunits were digested with Staphylococcus aureus V8 protease and trypsin, and the resulting fragments were separated by SDS-PAGE followed by reverse-phase high-performance liquid chromatography. N-terminal sequence analysis identified the hydrophobic segments M1, M3, and M4 within each subunit as containing the sites of labeling. The labeling pattern of 1-AP in the alpha-subunit was compared with that of another hydrophobic photoactivatable probe, 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID). The nonspecific component of [125I]TID labeling [White, B., Howard, S., Cohen, S. G., & Cohen, J.B. (1991) J. Biol. Chem. 266, 21595-21607] was restricted to the same regions as those labeled by 1-AP. The [125I]TID residues labeled in the hydrophobic segment M4 were identified as Cys-412, Met-415, Cys-418, Thr-422, and Val-425. The periodicity and distribution of labeled residues establish that the M4 region is alpha-helical in nature and indicate that M4 presents a broad face to membrane lipid.  相似文献   

8.
Nirthanan S  Ziebell MR  Chiara DC  Hong F  Cohen JB 《Biochemistry》2005,44(41):13447-13456
The interactions of a photoreactive analogue of benzoylcholine, 4-azido-2,3,5,6-tetrafluorobenzoylcholine (APFBzcholine), with nicotinic acetylcholine receptors (nAChRs) were studied using electrophysiology and photolabeling. APFBzcholine acted as a low-efficacy partial agonist, eliciting maximal responses that were 0.3 and 0.1% of that of acetylcholine for embryonic mouse and Torpedo nAChRs expressed in Xenopus oocytes, respectively. Equilibrium binding studies of [3H]APFBzcholine with nAChR-rich membranes from Torpedo electric organ revealed equal affinities (K(eq) = 12 microM) for the two agonist binding sites. Upon UV irradiation at 254 nm, [3H]APFBzcholine was photoincorporated into the nAChR alpha, gamma, and delta subunits in an agonist-inhibitable manner. Photolabeled amino acids in the agonist binding sites were identified by Edman degradation of isolated, labeled subunit fragments. [3H]APFBzcholine photolabeled gammaLeu-109/deltaLeu-111, gammaTyr-111, and gammaTyr-117 in binding site segment E as well as alphaTyr-198 in alpha subunit binding site segment C. The observed pattern of photolabeling is examined in relation to the predicted orientation of the azide when APFBzcholine is docked in the agonist binding site of a homology model of the nAChR extracellular domain based upon the structure of the snail acetylcholine binding protein.  相似文献   

9.
The muscle-type nicotinic receptor has two distinguishable acetylcholine binding sites at the alpha-gamma and alpha-delta subunit interfaces; alpha-conotoxins can bind them selectively. Moreover, we previously reported that alpha-conotoxin MI can interact with Torpedo californica and Torpedo marmorata receptors showing that conotoxins can also detect receptors from different species of the same genus [L. Cortez, S.G. del Canto, F. Testai, M.B. de Jiménez Bonino, Conotoxin MI inhibits the acetylcholine binding site of the Torpedo marmorata receptor, Biochem. Biophys. Res. Commun. 295 (2002) 791-795]. Herein, to identify T. marmorata receptor regions involved in alpha-conotoxin MI binding, a photoactivatable reagent was used and labeled sites were mapped by enzymatic proteolysis, MALDI-TOF-MS and Edman degradation. alpha-Conotoxin MI binding determinants were found and studies revealed a second binding motif at the alpha/delta interface. A proposal for receptor-toxin interaction is discussed based on experimental results and docking studies.  相似文献   

10.
Get effective polyclonal antisera in one month   总被引:17,自引:0,他引:17  
Hu YX  Guo JY  Shen L  Chen Y  Zhang ZC  Zhang YL 《Cell research》2002,12(2):157-160
According to the traditional immunization procedure, after the first injection of the sample A (emulsion of aimed antigen and Freund‘s complete adjuvant) to immunize rabbit, successive injections of the sample B (emulsion of aimed antigen and Freund‘s incomplete adjuvant) were followed every 2-4 weeks. In general,high titer of the corresponding polyclonal antisera will be observed after 4-5 injections of sample B in 3-4months. This report presents a simply modified procedure that was able to stimulate the antisera formation in one month and achieve enough avidity to satisfy either Western blot or immunohistochemistry analysis.It just applied an additional injection of the sample A to the rabbit at the 3rd day after the primary immunization injection. You could gain the high titer of the antisera right after the first sample B injection in one month. This method has produced the desired results in three different recombinant antigens with different molecular weight (5.9 KD-55 KD) expressed from prokaryotic or eukaryotic cells.  相似文献   

11.
Agonist-binding kinetics to the nicotinic acetylcholine receptor (AChR) from Torpedo californica were measured using sequential-mixing stopped-flow fluorescence methods to determine the contribution of each individual site to agonist-induced opening and desensitization. Timed dansyl-C6-choline (DC6C) binding followed by its dissociation upon mixing with high, competing agonist concentrations revealed four kinetic components: an initial, fast fluorescence decay, followed by a transient increase, and then two characteristic decays that reflect dissociation from the desensitized agonist sites. The transient increase resulted from DC6C binding to the open-channel based on its prevention by proadifen, a noncompetitive antagonist. Further characterization of DC6C channel binding by the inhibition of [3H]phencyclidine binding and by equilibrium measurements of DC6C fluorescence yielded KD values of 2-4 microM for the desensitized AChR and approximately 600 microM for the closed state. At this site, DC6C displayed a strongly blue-shifted emission spectrum, higher intrinsic fluorescence, and weaker energy transfer from tryptophans than when bound to either agonist site. The initial, fast fluorescence decay was assigned to DC6C dissociation from the alphadelta site of the AChR in its closed conformation, on the basis of inhibition with the site-selective antagonists d-tubocurarine and alpha-conotoxin MI. Fast decay amplitude data indicated an apparent affinity of 0.9 microM for the closed-state alphadelta site; the closed-state alphagamma-site affinity is inferred to be near 100 microM. These values and the known affinities for the desensitized conformation show that the alphagamma site drives AChR desensitization to a approximately 40-fold greater extent than the alphadelta site, undergoes energetically larger conformational changes, and is the primary determinant of agonist potency.  相似文献   

12.
13.
By chemical modification of different lysine residues, benzoylbenzoyl (BzBz) groups were introduced into neurotoxin II Naja naja oxiana (NT-II), a short-chain snake venom alpha-neurotoxin, while p-benzoylphenylalanyl (Bpa) residue was incorporated in the course of peptide synthesis at position 11 of alpha-conotoxin G1, a neurotoxic peptide from marine snails. Although the crosslinking yields for iodinated BzBz derivatives of NT-II and for Bpa analogue of G1 to the membrane-bound Torpedo californica nicotinic acetylcholine receptor (AChR) are relatively low, the subunit labeling patterns confirm the earlier conclusions, derived from arylazide or diazirine photolabels, that alpha-neurotoxins and alpha-conotoxins bind at the subunit interfaces. Detecting the labeled alpha-subunit with iodinated Bpa analogue of G1 provided a direct proof for the contact between this subunit and alpha-conotoxin molecule.  相似文献   

14.
The structures of the major oligosaccharide moieties of the nicotinic acetylcholine receptor (AcChoR) protein from Torpedo californica have been reported [Nomoto, H., Takahashi, N., Nagaki, Y., Endo, S., Arata, Y. and Hayashi, K. (1986) Eur. J. Biochem. 157, 233-242] to be high-mannose types. Here we report detailed analyses of the structures of the remaining oligosaccharides in this receptor. The sialylated oligosaccharides released by glycopeptidase (almond) digestion were separated according to the number of sialic acid residues using high-performance anion-exchange chromatography with pulsed amperometric detection. After removal of sialic acid from each fraction, the resulting neutral oligosaccharides were separately pyridylaminated and were analyzed by a combination of sequential exoglycosidase digestion and HPLC, then identified on a two-dimensional sugar map. The structures of two desialylated pyridylamino-oligosaccharides were further analyzed by high-resolution proton NMR. Each oligosaccharide was composed of species containing varying numbers of sialic acids. The desialylated complex-type oligosaccharides of AcChoR consisted of ten, eight and one different biantennary, triantennary and tetraantennary oligosaccharide, respectively. The biantennary oligosaccharides were divided into two groups; oligosaccharides with fucose at the proximal N-acetylglucosamine (six varieties) and oligosaccharides without fucose (four varieties). Each group consisted of species differing in the number of terminal galactose residues. The major component of the biantennary oligosaccharides had two galactose residues at the non-reducing termini. The terminal alpha-galactose residue(s) linked to C3 of beta-galactose were found in the fucose-containing biantennary oligosaccharides (two varieties). The triantennary oligosaccharides were also divided into two groups; oligosaccharides with (four varieties) and without (four varieties) besecting N-acetylglucosamine. These groups were composed of species differing in the number of terminal galactose residues. The major component of the triantennary oligosaccharides was fully galactosylated with three galactose residues. An unusual group, Gal beta 1-3GlcNAc, was present in low levels in the triantennary oligosaccharides. In contrast, the tetraantennary oligosaccharide was composed of only one species, which is fully galactosylated with four galactose residues.  相似文献   

15.
Nicotinic acetylcholine receptors (nAChR) are diverse members of the ligand-gated ion channel superfamily of neurotransmitter receptors and play critical roles in chemical signaling throughout the nervous system. Reports of effects of substance P (SP) on nAChR function prompted us to investigate interactions between several tachykinins and human nAChR subtypes using clonal cell lines as simple experimental models. Acute exposure to SP inhibits carbamylcholine- or nicotinestimulated function measured using86Rb+ efflux assays of human ganglionic (α3β4) nAChR expressed in SH-SY5Y neuroblastoma cells (IC50∼2.3 μM) or of human muscle-type (α1β1γδ) nAChR expressed in TE671/RD clonal cells (IC50∼21 μM). SP also acutely blocks function of rat ganglionic nAChR expressed in PC12 pheochromocytoma cells (IC50∼2.1 μM). Neurokinin A and eledoisin inhibit function (extrapolated IC50 values between 60 and 160 μM) of human muscle-type or ganglionic nAChR, but neurokinin B does not, and neither human nAChR is as sensitive as PC12 cell α3β4-nAChR to eledoisin or neurokinin A inhibition. At concentrations that produce blockade of nAChR function, SP fails to affect binding of [3H]acetylcholine to human muscle-type or ganglionic nAChR. SP-mediated blockade of rat or human ganglionic nAChR function is insurmountable by increasing agonist concentrations. Collectively, these results indicate that tachykinins act noncompetitively to inhibit human nAChR function with potencies that vary across tachykinins and nAChR subtypes. They also indicate that tachykinin actions at nAChR could further contribute to complex cross-talk between nicotinic cholinergic and tachykinin signals in regulation of nervous system activity.  相似文献   

16.
Membrane fragments rich in cholinergic (nicotinic) receptor protein were purified from the electric organ of Torpedo marmorata. Their lipid composition is essentially characterized by the prominence of cholesterol, phosphatidylethanolamine and phosphatidylcholine, long-chain fatty acyl constituents, and the absence of sphingomyelin. Solubilised receptor was purified from these fragments and the concentration of sodium cholate lowered by dialysis to 0.01% (w/v). When this preparation was injected under a lipid monolayer, an increase of surface pressure developed, which was not observed with the detergent alone nor in the absence of lipid film. When covalently radiolabelled receptor preparations were injected at a constant surface pressure the radioactivity recovered with the film was proportional to the increase in area. It is concluded that the pressure or area increases are due to the penetration of the cholinergic receptor protein into the lipid film. Incorporation experiments into films formed from various pure lipids showed that the protein interacts more readily with cholesterol than with ergosterol, phosphatidylcholine, or other phospholipids. Its affinity is also higher for long-chain phosphatidylcholines than for short-chain ones. The degree of unsaturation and fluidity of the 3-sn-phosphatidylcholine (lecithin) films are of secondary importance. Parallel experiments with covalently and non-covalently labelled receptor preparations showed that part of the protein recovered with the film lost its alpha-toxin binding ability during the penetration. Similar data were obtained with the receptor purified from Electrophorus electricus electric organ.  相似文献   

17.
Analysis of the binding of monoclonal antibodies (mAbs) by Torpedo nicotinic acetylcholine receptor (AChR) has demonstrated that a region of the alpha-subunit between alpha-156 and alpha-179 is exposed on the cytoplasmic surface of the nicotinic post-synaptic membrane. A panel of mAbs was produced that recognized sodium dodecyl sulfate-denatured subunits of the Torpedo AChR. Antibodies recognizing alpha-subunit were distinguished in terms of their ability to bind alpha-subunit fragments generated by Staphylococcus aureus V8 protease: an 18-kDa fragment beginning at Val-46, a 20-kDa fragment beginning at Ser-173/Ser-162, and a 10 kDa fragment beginning at Asn-339. Three mAbs, selected for binding to each of the V8-protease alpha-subunit fragments, respectively, were characterized in detail. The location of epitopes recognized by both anti-V8-18 and anti-V8-20 mAbs was determined to be within alpha-156 to alpha-179 by isolation of small immunoreactive peptides from proteolytic digests of the alpha-subunit, while the mAb reactive to V8-10 was bound to an epitope within alpha-339 to alpha-386. Quantitative evaluation of binding of the anti-V8-18 and anti-V8-20 mAbs to overlapping synthetic peptides corresponding to alpha-147 to alpha-179 localized the epitopes to distinct portions of this region. Further screening of the panel of mAbs using these synthetic peptides revealed three additional mAbs that bind in this region. The mAbs that bound the three distinct V8-protease alpha-subunit fragments were shown to bind to native AChR by indirect immunofluorescence on frozen sections of Torpedo electric organ. Binding to the native AChR was to the cytoplasmic surface of the AChR since the mAbs could bind to AChR in native vesicles, in which the AChR is oriented right-side-out, only after permeabilization of the vesicles by alkaline treatment or after scrambling of the orientation of the AChR by solubilization and reconstitution into liposomes. The location of the mAb-binding sites at the cytoplasmic surface of the AChR was visualized directly by freeze-etch immunoelectron microscopy. The identification of alpha-156 and alpha-179 as containing a cytoplasmic exposed sequence implies the existence of two non-hydrophobic transmembrane sequences between the site of N-glycosylation (Asn-141) and Cys-192, a site alkylated by the cholinergic affinity labels.  相似文献   

18.
R Haring  Y Kloog 《Life sciences》1984,34(11):1047-1055
Binding of [3H]-phencyclidine ( [3H]-PCP) to acetylcholine-receptor enriched membrane from Torpedo ocellata electric organ was studied over a ligand concentration range of 1 to 200 microM. The results indicate that [3H]-PCP is bound to two classes of sites: high affinity (Kd = 6-9 microM) and low affinity (Kd = 85 microM) binding sites. In the absence of cholinergic drugs the ratio of high affinity [3H]-PCP binding sites to 125I-alpha-bungarotoxin (alpha-Bgt) binding sites is 0.37, and that of low affinity [3H]-PCP binding sites to 125I-alpha-Bgt is 1.06. Low affinity [3H]-PCP binding can be completely inhibited by alpha-bungarotoxin (alpha-Bgt), carbamylcholine and d-tubocurarine. This inhibition, together with the one to one stoichiometry with 125I-alpha-Bgt, suggests that the sites to which [3H]-PCP binds with low affinity are the acetylcholine (AcCho) binding sites. In the presence of 1 microM alpha-Bgt which blocks binding of [3H]-PCP to the AcCho binding sites, the ratio of high affinity [3H]-PCP sites to 125I-alpha-Bgt sites is 0.5, indicating the existence of one high affinity PCP site per receptor molecule, The toxin, however, decreases the apparent affinity of [3H]-PCP towards the AcCho receptor as well as the potency of tetracaine or dibucaine in inhibiting [3H]-PCP binding to that receptor. In the latter case the effect involves changes from a biphasic to a simple inhibition curve. The results suggest that non-competitive blockers to the AcCho receptors may affect their own sites as well, and that they do this also by binding to the AcCho binding sites. This is also inferred from the accelerated dissociation of [3H]-PCP from its high affinity binding sites by unlabeled PCP in the concentration range of 10(-3) to 10(-4) M, at which the drug occupies AcCho binding sites as well.  相似文献   

19.
Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [(3)H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[(3)H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our understanding of the locations of allosteric modulator binding sites in the nAChR, we now characterize the interactions of a second aryl diazirine etomidate derivative, TFD-etomidate (ethyl-1-(1-(4-(3-trifluoromethyl)-3H-diazirin-3-yl)phenylethyl)-1H-imidazole-5-carboxylate). TFD-etomidate inhibited acetylcholine-induced currents with an IC(50) = 4 μM, whereas it inhibited the binding of [(3)H]phencyclidine to the Torpedo nAChR ion channel in the resting and desensitized states with IC(50) values of 2.5 and 0.7 mm, respectively. Similar to [(3)H]TDBzl-etomidate, [(3)H]TFD-etomidate bound to a site at the γ-α subunit interface, photolabeling αM2-10 (αSer-252) and γMet-295 and γMet-299 within γM3, and to a site in the ion channel, photolabeling amino acids within each subunit M2 helix that line the lumen of the ion channel. In addition, [(3)H]TFD-etomidate photolabeled in an agonist-dependent manner amino acids within the δ subunit M2-M3 loop (δIle-288) and the δ subunit transmembrane helix bundle (δPhe-232 and δCys-236 within δM1). The fact that TFD-etomidate does not compete with ion channel blockers at concentrations that inhibit acetylcholine responses indicates that binding to sites at the γ-α subunit interface and/or within δ subunit helix bundle mediates the TFD-etomidate inhibitory effect. These results also suggest that the γ-α subunit interface is a binding site for Torpedo nAChR negative allosteric modulators (TFD-etomidate) and for positive modulators (TDBzl-etomidate).  相似文献   

20.
The hydrophobic, photoreactive probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to characterize the effects of lipids and detergents on acetylcholine receptor (AChR) conformation. Affinity purified AChR reconstituted into dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidic acid (DOPA), and cholesterol showed the same pattern of [125I]TID-labeling and demonstrated the same reduction in labeling of all four subunits upon desensitization by the agonist carbamylcholine, as partially purified AChR in native lipids. On the basis of the patterns of [125I]TID incorporation, reconstitution into DOPC/DOPA also appeared to stabilize the resting (functional) conformation of the AChR, while reconstitution in DOPC/cholesterol or DOPC alone largely desensitized the AChR. The effects of lipids on the functional state of the AChR was determined independently by measuring the ability of AChR reconstituted into different lipid combinations to undergo the change in affinity for agonist diagnostic of desensitization. The dramatic reduction in the apparent levels of [125I]TID associated with the subunits of the AChR observed upon agonist-induced desensitization was shown not to be due to a change in affinity for tightly bound lipid. Solubilization of affinity purified AChR reconstituted into DOPC/DOPA/cholesterol by the non-ionic detergents octyl glucoside, Triton X-100, and Tween 20 (final detergent concentration = 1%) was shown to produce the same pattern of [125I]TID-labeling as desensitization by agonist, while solubilization in 1% sodium cholate appeared to stabilize a conformation of the AChR more similar to the resting state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号