首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The timing of appearance of mRNAs encoding gap junction proteins was examined during development of the rat and mouse brain. Complementary DNAs (cDNAs) specific for the mRNA for the liver-type gap junction protein, connexin32, and the heart-type gap junction protein, connexin43, were used to probe Northern blots of total RNA isolated from the forebrain and hindbrain of mice and rats at various times before and after birth. Prior to postnatal day 10, connexin32 mRNA is detectable only at low levels. By postnatal days 10 to 16, a sharp increase occurs in the level of this mRNA. This increase is detectable first in the hindbrain, and subsequently in the forebrain. In contrast, connexin43 mRNA is readily detectable at birth, and the level of this mRNA also increases during subsequent development. The developmental appearance of the gap junction proteins, connexin32 and connexin43, was similar to that of their respective mRNAs. These results indicate that the genes encoding connexin32 and connexin43 are differentially expressed during neural development.  相似文献   

2.
The timing of appearance of mRNAs encoding gap junction proteins was examined during development of the rat and mouse brain. Complementary DNAs (cDNAs) specific for the mRNA for the liver-type gap junction protein, connexin32, and the heart-type gap junction protein, connexin43, were used to probe Northern blots of total RNA isolated from the forebrain and hindbrain of mice and rats at various times before and after birth. Prior to postnatal day 10, connexin32 mRNA is detectable only at low levels. By postnatal days 10 to 16, a sharp increase occurs in the level of this mRNA. This increase is detectable first in the hindbrain, and subsequently in the forebrain. In contrast, connexin43 mRNA is readily detectable at birth, and the level of this mRNA also increases during subsequent development. The developmental appearance of the gap junction proteins, connexin32 and connexin43, was similar to that of their respective mRNAs. These results indicate that the genes encoding connexin32 and connexin43 are differentially expressed during neural development.  相似文献   

3.
Gap junctions are intercellular channels composed of connexin subunits that mediate cell-cell communication. The functions of gap junctions are believed to be associated with cell proliferation and differentiation and to be important in maintaining tissue homeostasis. We therefore investigated the expression of connexins (Cx)26 and 43, the two major connexins in human epidermis, and examined the formation of gap junctions during human fetal epidermal development. By immunofluorescence, Cx26 expression was observed between 49 and 96 days' estimated gestational age (EGA) but was not present from 108 days' EGA onwards. Conversely, Cx43 expression was observed from 88 days' EGA onwards. Using electron microscopy, the typical structure of gap junctions was observed from 120 days' EGA. The number of gap junctions increased over time and they were more common in the upper layers, within the periderm and intermediate keratinocyte layers rather than the basal layer. Immunoelectron microscopy revealed Cx43 labeling on the gap junction structures after 105 days' EGA. Formation of gap junctions increased as skin developed, suggesting that gap junctions may play an important role in fetal skin development. Furthermore, the changing patterns of connexin expression suggest that Cx26 is important for early fetal epidermal development.  相似文献   

4.
5.
We report here experiments undertaken in pairs of hepatocytes that demonstrate a marked voltage sensivity of junctional conductance and, thus, contradict earlier findings reported by this laboratory (Spray, D.C., R.D.ginzberg, E.A., E. A. Morales, Z. Gatmaitan and I.M. Arias, 1986, J. Cell Biol. 101:135-144; Spray C.D. R.L. White, A.C. Campos de Carvalho, and M.V.L. Bennett. 1984. Biophys. J. 45:219-230) and by others (Dahl, G., T. Moller, D. Paul, R. Voellmy, and R. Werner. 1987. Science [Wash. DC] 236:1290-1293; Riverdin, E.C., and R. Weingart. 1988. Am. J. Physiol. 254:C226-C234). Expression in exogenous systems, lipid bilayers in which fragments of isolated gap junction membranes were incorporated (Young, J.D.-E., Z. Cohn, and N.B. Gilula. 1987. Cell. 48:733-743.) and noncommunicating cells transfected with connexin32 cDNA (Eghbali, B., J.A. Kessler, and D.C. Spray. 1990. Proc. Natl. Acad. Sci. USA. 87:1328-1331), support these findings and indicate that the voltage-dependent channel is composed of connexin32, the major gap junction protein of rat liver (Paul, D. 1986. J. Cell Biol. 103:123-134).  相似文献   

6.
7.
8.
Drosophila has several genes for gap junction proteins.   总被引:1,自引:0,他引:1  
K D Curtin  Z Zhang  R J Wyman 《Gene》1999,232(2):191-201
  相似文献   

9.
10.
Pannexins, a class of membrane channels, bear significant sequence homology with the invertebrate gap junction proteins, innexins and more distant similarities in their membrane topologies and pharmacological sensitivities with the gap junction proteins, connexins. However, the functional role for the pannexin oligomers, or pannexons, is different from connexin oligomers, the connexons. Many pannexin publications have used the term "hemichannels" to describe pannexin oligomers while others use the term "channels" instead. This has led to confusion within the literature about the function of pannexins that promotes the idea that pannexons serve as gap junction hemichannels and thus have an assembly and functional state as gap junctional intercellular channels. Here we present the case that unlike the connexin gap junction intercellular channels, so far, pannexin oligomers have repeatedly been shown to be channels that are functional in single membranes, but not as intercellular channel in appositional membranes. Hence, they should be referred to as channels and not hemichannels. Thus, we advocate that in the absence of firm evidence that pannexins form gap junctions, the use of the term "hemichannel" be discontinued within the pannexin literature.  相似文献   

11.
12.
13.
The sequence of the amino-terminal 32 residues of the rat heart Mr 28,000 gap junction protein presented here allows, for the first time, a sequence comparison of gap junctional proteins from different tissues (heart and liver). Comparison of the rat heart gap junction protein sequence and that available from rat liver reveals 43% sequence identity and conservative changes at an additional 25% of the positions. Both proteins exhibit a hydrophobic domain which could represent a transmembrane span of the junction. This result unequivocally demonstrates the existence of at least two forms of the gap junction protein. As yet, no homology is evident between the gap junctional proteins of either heart or liver and main intrinsic protein from rat eye lens.  相似文献   

14.
 During segmentation of the mouse hindbrain (d8.0–8.5 pc), expression of the gap junction gene connexin31 (cx31) is precisely restricted to rhombomeres (r) 3 and 5. Shortly afterwards, during the turning process, cx31 expression in rhombomere 3 decreases and is no longer detectable at d9.5 pc, whereas expression in rhombomere 5 is maintained until about d10.0 pc. So far, cx31 is the first gap junction gene found to be expressed in rhombomeres. Its precise segmental and temporal expression pattern may reflect a critical requirement of cx31 channels for these odd numbered rhombomeres to acquire distinct cell identities. Received: 9 June 1997 / Accepted: 30 July 1997  相似文献   

15.
The expression of three different members of the gap junction multigene family, alpha 1 (Cx43), beta 1 (Cx32), and beta 2 (Cx26), was analysed in the rat implantation chamber (a structural unit containing fetal, extraembryonic and maternal components within the pregnant uterus) during mid- and late stages of gestation as well as in the delivering, post-partum and non-pregnant uterus. A differential, spatiotemporal and cell-type-specific regulation of gap junctional coexpression was observed for beta 1 and beta 2 in all epithelia examined (visceral, luminal and glandular), as well as for alpha 1 and beta 2 in decidual cells and keratinocytes of the fetal epidermis. alpha 1 antigen was detected in the mesometrial stroma, mesometrial myometrium, connective tissue, mesothelia of the amnion and visceral yolk sac and in the allantoic mesodermal layer throughout gestation. In addition, expression of alpha 1 in the placental basal zone and trophoblast giant cells coincided with the differentiation of these cells. beta 2 expression was observed prominently in the chorionic villi of the placental labyrinth. The presence of beta 1 and beta 2 in the visceral epithelium (visceral yolk sac = the primary route for embryonic nourishment prior to the formation of the chorioallantoic placenta) and beta 2 in the chorionic villi (placental barrier = the major fetomaternal exchange route) suggests that gap junctions have an important role in fetomaternal communication.  相似文献   

16.
17.
18.
End-stage heart failure (HF) is characterized by changes in conduction velocity (CV) that predispose to arrhythmias. Here, we investigate the time course of conduction changes with respect to alterations in connexin 43 (Cx43) properties and mechanical function during the development of HF. We perform high-resolution optical mapping in arterially perfused myocardial preparations from dogs subjected to 0, 3, 7, 14, and 21 days of rapid pacing to produce variable degrees of remodeling. CV is compared with an index of mechanical function [left ventricular end-diastolic pressure (LVEDP)] and with dynamic changes in the expression, distribution, and phosphorylation of Cx43. In contrast to repolarization, CV was preserved during early stages of remodeling (3 and 7 days) and significantly reduced at later stages, which were associated with marked increases in LVEDP. Measurements of differentially phosphorylated Cx43 isoforms revealed early, sustained downregulation of pan-Cx43 that preceded changes in CV and LVEDP, a gradual rise in a dephosphorylated Cx43 isoform to over twofold baseline levels in end-stage HF, and a late abrupt increase in pan-Cx43, but not dephosphorylated Cx43, lateralization. These data demonstrate that 1) CV slowing occurs only at advanced stages of remodeling, 2) total reduction of pan-Cx43 is an early event that precedes mechanical dysfunction and CV slowing, 3) changes in Cx43 phosphorylation are more closely associated with the onset of HF, and 4) Cx43 lateralization is a late event that coincides with marked CV reduction. These data reveal a novel paradigm of remodeling based on the timing of conduction abnormalities relative to changes in Cx43 isoforms and mechanical dysfunction.  相似文献   

19.
20.
Gap junctions (GJs) belong to one of the most conserved cellular structures in multicellular organisms. They probably serve similar functions in all Metazoa, providing one of the most common forms of intercellular communication. GJs are widely distributed in embryonic cells and tissues and have been attributed an important role in development, modulating cell growth and differentiation. These channels have been also implicated in mediating electrical synaptic signaling; Coupling through GJs is now accepted as a major pathway that supports network behavior and contributes to physiological rhythms. Here we focus on the physiology and molecular biology of GJs in a recently established model for the study of rhythm-generating networks and their role in behavior: the frontal ganglion (FG) of the desert locust, Schistocerca gregaria. Four novel genes of the invertebrate GJs (innexin) gene family were found to be expressed in the FG: Sg-inx1, Sg-inx2, Sg-inx3 and Sg-inx4. Immunohistochemistry revealed that some of the neurons in the FG express at least one innexin protein, INX1. We also established the presence of functional gap junction proteins in the FG and demonstrated functional electrical coupling between the neurons in the FG. This study forms the basis for further investigation of the role of GJs in network development and behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号