首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional effects of ants in rainforest canopies depend on difficult to characterize ant diets. In Bornean dipterocarp forests, certain diurnal, arboreal, territorial, and ecologically dominant ‘COCY’ ant species (Colobopsis cylindrica clade) grazed epiphytic biofilms on adaxial leaf surfaces, as well as on tree trunks and branches. Microscopic examination of worker buccal pellets revealed numerous (mainly ascomycete) fungal spores, together with insect appendages and cuticle. Direct observations, video‐imaging, and δ15N isotope data rule out feeding by predation, but isotopes cannot separate fungi from plant and insect exudates as principal nitrogen sources. Lipid‐rich products, extracted from pellets in situ, are hypothesized sources of essential sterols. Also present in pellets were colorful mandibular gland (MG) compounds unique to this ant clade and deployed, as a derived character state, in suicidal defense of foraging territories. Mildly antimicrobial and highly adhesive MG products also occur basally in the clade and may have first evolved for roles in microbial sterilization and food‐gathering and processing. Proteomic studies of YG COCY ants detected 2% proteins in hypertrophied, product‐filled MG reservoirs, but SDS‐PAGE qualitative analysis revealed mostly low‐molecular mass proteins and peptides (8–15 kDa), too small for enzymes but consistent with membrane‐binding proteins and/or antimicrobial peptides. Breakdown of chitin and chitosan in pellets may occur with enzymes derived from molting fluids in insect cuticle (proteases and chitinases) and/or fungi and bacteria. To the extent that COCY workers collect and consume pathogenic and/or beneficial phyllosphere microbes, ant effects on plants may be mediated by these activities.  相似文献   

2.
With their position at the interface between land and ocean and their fragile nature, lagoons are sensitive to environmental change, and it is reasonable to expect these changes would be recorded in well‐preserved taxa such as molluscs. To test this, the 4000‐year history of molluscs in Great South Bay, a bar‐built lagoon, was reconstructed from 24 vibracores. Using x‐radiography to identify shell layers, faunal counts, shell condition, organic content, and sediment type were measured in 325 samples. Sample age was estimated by interpolating 40 radiocarbon dates. K‐means cluster analysis identified three molluscan assemblages, corresponding to sand‐associated and mud‐associated groups, and the third associated with inlet areas. Redundancy and regression tree analyses indicated that significant transitions from the sand‐associated to mud‐associated assemblage occurred over large portions of the bay about 650 and 294 years bp . The first date corresponds to the transition from the Medieval Warm Period to the Little Ice Age; this change in climate reduced the frequency of strong storms, likely leading to reduced barrier island breaching, greater bay enclosure, and fine‐grained sediment accumulation. The second date marks the initiation of clear cutting by European settlers, an activity that would have increased runoff of fine‐grained material. The occurrence of the inlet assemblage in the western and eastern ends of the bay is consistent with a history of inlets in these areas, even though prior to Hurricane Sandy in 2012, no inlet was present in the eastern bay in almost 200 years. The mud dominant, Mulinia lateralis, is a bivalve often associated with environmental disturbances. Its increased frequency over the past 300 years suggests that disturbances are more common in the bay than in the past. Management activities maintaining the current barrier island state may be contributing to the sand‐mud transition and to the bay's susceptibility to disturbances.  相似文献   

3.
Marine organisms inhabiting soft‐bottom sediment are particularly susceptible to rapid sedimentation and erosion events. This article presents a novel example of fossilized intestine casts located within closed bivalve shells in relation to rapid sedimentation event from the Pleistocene sediment of the Oga Peninsula, Akita Prefecture, northern Japan. The mollusc shells were loosely packed in well‐sorted medium‐grained to coarse‐grained sandstone associated with low‐angle trough cross‐stratification. The closed shells of Glycymeris yessoensis were present in the shell concentration. The internal parts of the shells were almost hollow, being partially filled with yellow fine‐grained clay minerals (median grain size = 30.63 μm). The characteristic material within the shells clearly differed from the surrounding sediment, which consisted of coarse‐grained felsic minerals (median grain size = 449.73 μm). Furthermore, the yellow fine‐grained clay minerals within the shells were tube‐shaped, and located near the posterior adductor scar. On the basis of anatomical observation of living Glycymeris, we confirmed that part of the intestine and the anus are also placed near the posterior adductor muscle. Therefore, the yellow fine‐grained clay minerals within the shells represent the fossil remains of particles ingested by the G. yessoensis individual through suspension‐feeding, and the tube‐shaped material is interpreted as being fossilized intestine cast. These results suggest that G. yessoensis individuals were buried alive, as rapid sedimentation prevented ejection and destruction of the filling material of intestine. The presence of intestine cast within the mollusc fossils can be used for recognizing rapid sedimentation.  相似文献   

4.
Highly localized concentrations of elasmobranch egg capsules of the deep‐water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north‐east Atlantic Ocean. Conductivity–temperature–depth profiling indicated that the eggs were bathed in a specific environmental niche of well‐oxygenated waters between 4·20 and 4·55° C, and salinity 34·95–35·06, on a coarse to fine‐grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef‐building stony coral Solenosmilia variabilis. The depths of both egg‐laying habitats (1489–1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates.  相似文献   

5.
1. Honey bees (Apis mellifera) prefer foraging at compound‐rich, ‘dirty’, water sources over clean water sources. As a honey bee's main floral diet only contains trace amounts of micronutrients – likely not enough to sustain an entire colony – it was hypothesised that honey bees forage in dirty water for physiologically essential minerals that their floral diet, and thus the colony, may lack. 2. While there are many studies regarding macronutrient requirements of honey bees, few investigate micronutrient needs. For this study, from 2013 to 2015, a series of preference assays were conducted in both summer and autumn. 3. During all field seasons, honey bees exhibited a strong preference for sodium in comparison to deionised water. There was, however, a notable switch in preferences for other minerals between seasons. 4. Calcium, magnesium, and potassium – three minerals most commonly found in pollen – were preferred in autumn when pollen was scarce, but were avoided in summer when pollen was abundant. Thus, as floral resources change in distribution and abundance, honey bees similarly change their water‐foraging preferences. 5. Our data suggest that, although they are generalists with relatively few gustatory receptor genes, honey bee foragers are fine‐tuned to search for micronutrients. This ability likely helps the foragers in their search for a balanced diet for the colony as a whole.  相似文献   

6.
Soil‐dwelling insects commonly co‐occur and feed simultaneously on belowground plant parts, yet patterns of damage and consequences for plant and insect performance remain poorly characterized. We tested how two species of root‐feeding insects affect the performance of a perennial plant and the mass and survival of both conspecific and heterospecific insects. Because root damage is expected to impair roots’ ability to take up nutrients, we also evaluated how soil fertility alters belowground plant–insect and insect–insect interactions. Specifically, we grew common milkweed Asclepias syriaca in low or high nutrient soil and added seven densities of milkweed beetles Tetraopes tetraophthalmus, wireworms (mainly Hypnoides abbreviatus), or both species. The location and severity of root damage was species‐specific: Tetraopes caused 59% more damage to main roots than wireworms, and wireworms caused almost seven times more damage to fine roots than Tetraopes. Tetraopes damage decreased shoot, main root and fine root biomass, however substantial damage by wireworms did not decrease any component of plant biomass. With the addition of soil nutrients, main root biomass increased three times more, and fine root biomass increased five times more when wireworms were present than when Tetraopes were present. We detected an interactive effect of insect identity and nutrient availability on insect mass. Under high nutrients, wireworm mass decreased 19% overall and was unaffected by the presence of Tetraopes. In contrast, Tetraopes mass increased 114% overall and was significantly higher when wireworms were also present. Survival of wireworms decreased in the presence of Tetraopes, and both species’ survival was negatively correlated with conspecific density. We conclude that insect identity, density and soil nutrients are important in mediating the patterns and consequences of root damage, and suggest that these factors may account for some of the contradictory plant responses to belowground herbivory reported in the literature.  相似文献   

7.
8.
From 51 surface samples collected along a shelf to slope transect of the Sunda Shelf, South China Sea, 36 taxa of organic‐walled dinoflagellate cysts are identified. Oligotrophic tropical shelf assemblages on the Sunda Shelf are dominated by gonyaulacoids such as Spiniferites species, Operculodinium centmcarpum and Operculodinium israelianum. Concentrations of dinoflagellate cysts in the shelf sediments are generally low and correlate well with the content of fine‐grained (clay and silt fraction) sediments. Detailed comparisons of sediment grain‐size distributions to concentrations of dominant dinoflagellate taxa (Spiniferites species, 0. centmcarpum and 0. israelianum) in the shelf sediments indicate that these taxa behave in water like sediment particles with size range φ 5.75–6.25 (13–18 μm). In contrast, slope assemblages in fine‐grained sediments are dominated by protoperidinioids. This may reflect higher nutrient availability as a result of weak winter upwelling. The concentrations of dinoflagellate cysts in the shelf sediments are mainly controlled by transport and winnowing processes and are probably not representative of surface water conditions.  相似文献   

9.
The distribution of total Pb in surface and subsurface soil horizons at an outdoor shooting range in southeastern Michigan was determined by single extraction elemental analysis (AAS and ICP‐AES). Significant Pb enrichment of the site's soils coincides closely with Pb vapor and particulate matter produced from shot shell primers and the downfall of Pb/Sb pellets associated with the recreational shooting of skeet and trap. Surface concentrations in these locations are 10 to 100 times greater than the background concentration found on adjacent properties. The distribution of Pb in the subsurface soil horizons corresponds to the distribution of Pb at the surface, which suggests the Pb is mobilizing and migrating downward through the vadose zone. This mobilization appears to be occurring despite the clay‐rich nature of the soils, and may be due to the transformation of metallic Pb into soluble Pb compounds of carbonate and sulfate: Both compounds appear to be present in crust material found coating many of the pellets found at the site. The downward migration of soluble Pb is a potential threat to groundwater that is present at the site at a depth of less than 1 m. The protection of surface water quality is also a concern because Pb pellets from the shooting range have been found in the bed sediments of a nearby stream.  相似文献   

10.
Abstract. Succession was studied on plots with the upper soil horizon removed in an area affected by acidic air pollution in the Kru?né Hory Mts., Czech Republic. 10 permanent 1‐m2 plots were marked and vegetation recorded annually using a grid of 100 subplots from 1989 to 1995. Constrained ordination analyses showed that soil texture is the most important environmental factor influencing the course of succession. Its effect on species composition increases with successional age of the plant community. On fine‐grained soils species‐poor communities dominated by grasses (Calamagrostis villosa, Deschampsiaflexuosa) and on coarse‐grained soils species‐rich communities dominated by heather (Calluna vulgaris) developed. Succession proceeded from communities where species composition was determined by diaspore availability towards communities where species composition depended on environmental conditions. Successional communities after 10 yr are more dependent on soil characteristics and consequently environmental determination increases over the course of succession and causes the communities to diverge.  相似文献   

11.
Effect of grazing on plant patterns in arid ecosystems of Patagonian Monte   总被引:2,自引:0,他引:2  
Our objective was to assess the relationship between the spatial patterning of perennial grasses (total, grazed, and non‐grazed) and shrub patches in rangelands under different grazing pressures of the Patagonian Monte. We selected three grazed paddocks with the usual stocking rate for the area, where previous studies showed that a piosphere formation is common. At each paddock, we analysed the grain of heterogeneity at sites located at two distances from the single watering point (near, far), using high‐resolution aerial photographs. At these sites, we also assessed in the field the density, size, cover, and spatial patterning of grazed and non‐grazed perennial grasses and shrub patches. The grain of heterogeneity of shrub patches was coarser in sites near the watering point than in those distant from it, as a consequence of the increase in size of both, bare soil and shrub patches. Field sampling showed that a coarse grain of heterogeneity relative to fine‐grained sites resulted from changes in species composition, increased bare soil areas and reduced perennial grass cover. In coarse‐grained sites, lower perennial grass cover resulted from lower density and/or smaller size of grass bunches than in fine‐grained sites. We did not find significant differences among sites in the proportion of perennial grazed grasses. Since the density and cover of perennial grasses was higher in fine‐ than in coarse‐grained sites, we suggested that fine‐grained sites are more important as feeding stations than coarse‐grained sites. The consequences of this differential use could lead to degradation of fine‐grained sites and to higher homogeneity in spatial plant structure and floristic composition within paddocks with respect to the condition observed at present, increasing the size of the highly degraded zone within the piosphere. At the patch level, we found that at about one third of the sampled transects, both total and non‐grazed perennial grasses were spatially aggregated with shrub patches. However, in most transects grazed perennial grasses were indifferently distributed in relation with shrub patches, showing that grazers display high selectivity of foraging sites at macro level (i.e. high and low grazing pressure sites at the paddock level), but random occupancy of vegetation units (randomness in the distribution of grazed perennial grasses at the patch level). The intensity of the positive association between non‐grazed grasses and shrub patches was higher in fine‐grained than in coarse‐grained sites and may be attributed to higher protection against herbivores associated to denser shrub patches in fine‐ relative to coarse‐grained sites. We concluded that a feedback exists between the spatial distribution of species preferred by grazers and the spatial patterning of use of these species.  相似文献   

12.
Land‐use change is one of the biggest threats to biodiversity globally. The effects of land use on biodiversity manifest primarily at local scales which are not captured by the coarse spatial grain of current global land‐use mapping. Assessments of land‐use impacts on biodiversity across large spatial extents require data at a similar spatial grain to the ecological processes they are assessing. Here, we develop a method for statistically downscaling mapped land‐use data that combines generalized additive modeling and constrained optimization. This method was applied to the 0.5° Land‐use Harmonization data for the year 2005 to produce global 30″ (approx. 1 km2) estimates of five land‐use classes: primary habitat, secondary habitat, cropland, pasture, and urban. The original dataset was partitioned into 61 bio‐realms (unique combinations of biome and biogeographical realm) and downscaled using relationships with fine‐grained climate, land cover, landform, and anthropogenic influence layers. The downscaled land‐use data were validated using the PREDICTS database and the geoWiki global cropland dataset. Application of the new method to all 61 bio‐realms produced global fine‐grained layers from the 2005 time step of the Land‐use Harmonization dataset. Coarse‐scaled proportions of land use estimated from these data compared well with those estimated in the original datasets (mean R2: 0.68 ± 0.19). Validation with the PREDICTS database showed the new downscaled land‐use layers improved discrimination of all five classes at PREDICTS sites (< 0.0001 in all cases). Additional validation of the downscaled cropping layer with the geoWiki layer showed an R2 improvement of 0.12 compared with the Land‐use Harmonization data. The downscaling method presented here produced the first global land‐use dataset at a spatial grain relevant to ecological processes that drive changes in biodiversity over space and time. Integrating these data with biodiversity measures will enable the reporting of land‐use impacts on biodiversity at a finer resolution than previously possible. Furthermore, the general method presented here could be useful to others wishing to downscale similarly constrained coarse‐resolution data for other environmental variables.  相似文献   

13.
Harmothoë imbricata is able to locate sources of vibration in the water and this response is an important part of the animal's prey‐capture mechanism. Animals having either palps, tentacular cirri, dorsal cirri or ventral cirri intact are able to locate a source of vibrations successfully. If none of these types of sensory appendage remain intact then the animals are unresponsive until regeneration of the appendages has occurred. The structure of the sensory appendages and the types of sensory endings which they carry have been described. After an object has been located there is a period of contact exploration by the animal's palps. The palps provide the animal with chemical information as to whether the object is suitable as prey and also about its exact position relative to the animal. Attack involves the rapid eversion of the proboscis which has four terminal jaws. The vibration source location response disappears after an animal has fed to satiation.  相似文献   

14.
Vegetation in water‐limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species‐specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long‐term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long‐term experimental drought shifted water uptake toward deeper (10–35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought‐affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions.  相似文献   

15.
Aim The scale dependence of many ecological patterns and processes implies that general inference is reliant on obtaining scale‐response curves over a large range of grains. Although environmental correlates of richness have been widely studied, comparisons among groups have usually been applied at single grains. Moreover, the relevance of environment–richness associations to fine‐grain assemblages has remained surprisingly unclear. We present a first global cross‐scale assessment of environment–richness associations for birds, mammals and amphibians from 2000 km down to c. 20 km. Location World‐wide. Methods We performed an extensive survey of the literature for well‐sampled terrestrial vertebrate inventories over clearly defined small extents. Coarser grain richness was estimated from the intersection of extent‐of‐occurrence range maps with concentric equal‐distance circles around fine‐grain assemblage location centroids. General linear and simultaneous autoregressive models were used to relate richness at the different grains to environmental correlates. Results The ability of environmental variables to explain species richness decreases markedly toward finer grains and is lowest for fine‐grained assemblages. A prominent transition in importance occurs between productivity and temperature at increased grains, which is consistent with the role of energy affecting regional, but not local, richness. Variation in fine‐grained predictability across groups is associated with their purported grain of space use, i.e. highest for amphibians and narrow‐ranged and small‐bodied species. Main conclusions We extend the global documentation of environment–richness associations to fine‐grained assemblages. The relationship between fine‐grained predictability of a group and its ecological characteristics lends empirical support to the idea that variation in species fine‐grained space use may scale up to explain coarse‐grained diversity patterns. Our study exposes a dramatic and taxonomically variable scale dependence of environment–richness associations and suggests that environmental correlates of richness may hold limited information at the level of communities.  相似文献   

16.
17.
The biocontrol fungi Trichoderma harzianum, used to control soilborne plant pathogens, and Beauveria bassiana, used to control insect pests, were formulated as mycelial biomass in alginate pellets with wheat bran added. After drying for 0, 4, or 16 h, pellets were placed in water or in aqueous solutions of polyethylene glycol (PEG) 8000 for 4 to 24 h and then allowed to continue drying. PEG-treated pellets containing T. harzianum showed significantly greater proliferation of hyphae in soil than untreated pellets or pellets treated with water. Production of conidia of T. harzianum from PEG-treated pellets was lower than production from untreated pellets after 4 days, although rates were equivalent after 7 days. In contrast, production of conidia of B. bassiana was significantly more rapid from PEG-treated pellets than from untreated pellets. Biocontrol of soilborne plant pathogens or insect pests may be enhanced by rapid hyphal growth of T. harzianum in soil or rapid sporulation of B. bassiana on foliage, respectively. Therefore, PEG treatment may improve the efficacy of these biocontrol agents.  相似文献   

18.
Bees which are held in a fixed position so that only head movements can be made, respond to a moving stripe system in their visual field by a characteristic motion of the antennae. This reflex can be used to measure the bee''s state of photic adaptation. A curve describing the course of dark adaptation is obtained, which shows that the sensitivity of the light adapted bee''s eye increases rapidly during the first few minutes in darkness, then more slowly until it reaches a maximum level after 25 to 30 minutes. The total increase in sensitivity is about 1000 fold. The adaptive range of the human eye is about 10 times greater than for the bee''s eye. The range covered by the bee''s eye corresponds closely to the adapting range which is covered by the rods of the human eye.  相似文献   

19.
Counts on Swainson's spurfowl Pternistis swainsonii were made during 1998–1999 within an intensive, fine‐grained, agricultural landscape to estimate population parameters, seasonal dispersion and habitat preferences. Radio‐transmitters were fitted to four birds to note habitat use and home ranges within the Summer breeding season. During Winter, population densities peaked, and birds exploited agricultural crops extensively. At the onset of Spring, densities dropped as birds paired to establish non‐overlapping breeding territories over a number of habitats with apparently sufficient cover and ‘natural’ food. Expanding grazed grassland appears to be the greatest threat to Swainson's spurfowl due to a lack of cover and food. The matrix of habitats within the landscape plays important roles in the success of this opportunistic spurfowl. Agricultural crops in the Winter sustain the population until the following Summer when natural savanna and ungrazed grasslands provide complementary foraging, nesting and roosting sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号