首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constance M. Soja 《Ichnos》2013,20(3):173-181
Early to Late Silurian (Llandovery‐Ludlow) body and trace fossils from the Heceta Formation of southeastern Alaska are preserved in the oldest widespread carbonates in the Alexander terrane. These fossils represent the earliest benthos to inhabit diverse shallow and deep subtidal environments in the region and are important indicators of early stages in benthic community development within the evolving Alexander arc. The ichnofossils are particularly significant because they add to a small but growing body of knowledge about trace fossils in deep‐water carbonates of Paleozoic age.

Carbonate turbidites that originated along a deep marine slope within the arc yield a low‐diversity suite of trace fossils consisting of five distinct biogenic forms. Simple burrows (Planolites, two forms), ramifying tunnels (Chondrites), and tiny cylindrical burrows (?Chondrites) represent the feeding activities (fodinichnia) of pre‐turbidite animals that burrowed in the lime mud before the influx of coarser sediment deposited by turbidity currents. These trace fossils are associated locally with cross‐cutting burrows created as domichnia (Palaeophycus). Rarer hypichnial burrows and endichnial traces were created by post‐turbidite animals that fed soon after the deposition of coarse detritus from turbidity flows.

Trace fossils in these deposits reflect much lower diversity levels than in Paleozoic siliciclastic turbidites. This difference may represent unfavorable environmental conditions for infaunas, differential preservation, or significant paleogeographic isolation of the Alexander terrane during the Silurian. Greater utilization of trace fossils in terrane analysis may help to resolve this issue and provide new data for reconstructing the paleogeography of circum‐Pacific terranes.  相似文献   

2.
Feeding trace fossils, produced by either deposit or detritus feeders and showing radial to rosetted morphology, are all included in the same architectural category. These radial to rosette ichnofossils are widely recorded worldwide throughout the Phanerozoic and have attracted the attention of numerous ichnologists for decades. Construction of a database summarizing occurrences of radial to rosette trace fossils through the Phanerozoic shows that representatives of this category occurred for the first time during the Fortunian, which accounts for the appearance of at least 12% of the total number of ichnogenera in this category. Overall, 32% of all known rosette ichnogenera resulted from the Cambrian Explosion. A second ichnodiversity increase took place (20%) during the Ordovician. Subsequent to the Great Ordovician Biodiversification Event, this architectural category shows minor fluctuations in ichnodiversity resulting in a long‐term plateau. The apparent decline in ichnodiversity by the end of the Cenozoic could reflect a taphonomic artefact resulting from the difficulties of identifying cumulative trace fossils in highly bioturbated modern sediments. Our data set indicates that several radial to rosette ichnogenera (e.g. Arenituba, Dactylophycus, Gyrophyllites, Phoebichnus, Volkichnium) occurred first in shallow‐marine settings and then migrated to either deeper‐water or marginal‐marine environments, while others (e.g. Asterichnus, Cladichnus, Dactyloidites) apparently first occurred in deep‐sea environments and then migrated to shallower waters.  相似文献   

3.
There were multiple origins of metamorphosis‐undergoing protaspides in trilobite evolution: within the superfamilies Remopleuridioidea, Trinucleoidea, and within the Order Asaphida. Recent studies have revealed that the protaspides of the Cambrian representatives of the Remopleuridioidea and the Trinucleoidea did not undergo metamorphosis. However, ontogeny of the Cambrian members of the Order Asaphida has remained unknown. This study documents the ontogeny of the Furongian asaphoidean ceratopygid trilobite, Proceratopyge cf. P. lata Whitehouse, from northern Victoria Land, Antarctica. Two stages for the protaspid phase, five developmental stages for the post‐protaspid cranidia, and ten stages for the post‐protaspid pygidia have been identified. Interestingly, the protaspis directly developed into a meraspis without metamorphosis. A new cladistic analysis resulted in a single most parsimonious tree, according to which the presence of the bulbous commutavi protaspis turns out to be a synapomorphy for Asaphidae + Cyclopygoidea, not a synapomorphy for the Order Asaphida as previously suggested. In addition, it is inferred that there was convergent evolution of indirectly‐developing commutavi protaspides during the Furongian and Early Ordovician. Metamorphosis‐entailing planktonic larvae evolved in many different metazoan lineages near the Cambrian–Ordovician transition, due to the escalating ecological pressure of the Great Ordovician Biodiversification Event. Since the bulbous commutavi protaspid morphology is thought to be an adaptation for a planktonic life mode, the convergent evolution of the indirect development in the three trilobite lineages at this period might have been a result of adaptation to the early phase of the Great Ordovician Biodiversification Event.  相似文献   

4.
An Upper Tremadocian deep-sea ichnofauna from the Chiquero Formation of Puna, northwest Argentina, represents a link between Ediacaran and Cambrian microbial-mat dominated ecosystems and younger Ordovician deep-marine trace-fossil assemblages. This ichnofauna is preserved at the base of thin-bedded turbidites formed in the lobe fringe of a back-arc deep-sea fan. While Ediacaran–Cambrian deep-marine trace fossils are typically linked to matground grazing and feeding, microbial textures in the Chiquero Formation are rare and not associated with trace fossils. Morphologic patterns (e.g. radial trace fossils and networks) of the Chiquero ichnofauna indicate the onset of novel trophic types, recording trapping of microorganisms and bacterial farming. However, in comparison with younger Ordovician deep-sea ichnofaunas, graphoglyptids are relatively rare, poorly diverse, and geometrically simpler. This study indicates that the Early Ordovician was a pivotal point in the ecology of deep-sea infaunal communities. This Upper Tremadocian ichnofauna records the arrival of the Agronomic Revolution to the deep sea. Comparisons with slightly older and younger deep-sea ichnofaunas demonstrate that the colonization of the deep sea was a protracted process spanning the Early Paleozoic, lagging behind colonization of nearshore and offshore substrates.  相似文献   

5.
After taxonomic revision, trace fossils show a similarly explosive diversification in the Ediacaran-Cambrian transition as metazoan body fossils. In shallow-marine deposits of Ediacaran age, trace fossils are horizontal, simple and rare, and display feeding strategies related to exploitation of microbial matgrounds. Equally notable is the absence of arthropod tracks and sinusoidal nematode trails. This situation changed in the Early Cambrian, when a dramatic increase in the diversity of distinct ichnotaxa is associated was followed by the onset of vertical bioturbation and the disappearance of a matground-based ecology (‘‘agronomic revolution’’). On deep sea bottoms, animals have been present already in the Ediacaran, but ichnofaunas were poorly diverse and dominated by the horizontal burrows of undermat miners. As shown by the ichnogenus Oldhamia, this life style continued to be predominant into the Early, and to a lesser extent, Middle Cambrian. Nevertheless, there was an explosive radiation of behavioral programs during the Early Cambrian. When exactly the bioturbational revolution arrived in the deep sea is uncertain. In any case, the Nereites ichnofacies was firmly established in the Early Ordovician. The rich ichnofauna in the Early Cambrian Guachos Formation of northwest Argentina probably marks a first step in this ecological onshore-offshore shift.  相似文献   

6.
In the past an ‘explosion’ in diversity and abundance of small shelly fossils and of trace fossils has served to mark the base of the Cambrian. However, no evidence has been presented to prove that the ‘explosions’ of the two groups were synchronous. We describe small shelly fossils and trace fossils from the same phosphatic limestone beds that indicate that the two events were separate in time. The small shelly fossils are Anabarites trisulcatus, Hyolithellus cf. H. isiticus, Microcornus? sp., Protohertzina anabarica, P. unguliformis, P. sp. A, Pseudorthotheca sp. A, Rushtonia? sp. A, four types of tuberculate plates and one type of reticulate plate. These fossils represent a restricted, ‘pre-explosion’ fauna and are assigned to the Anabarites-Circotheca-Protohertzina Assemblage Zone, an uppermost Precambrian zone in the Meishucun Stage, Yunnan Province, China. A point at the top of this zone has received strong international endorsement for future designation as the base of the Cambrian. Associated with the small shelly fossils are the trace fossils Cruziana sp. A, Cruziana? sp. B, Rusophycus sp. A, Palaeophycus rubdark and arthropod scratch marks. If found in isolation, this trace fossil assemblage would be considered as post-Precambrian because it includes large, highly organized arthropod traces that are traditionally accepted as occurring above the trace fossil ‘explosion’. We therefore conclude that the trace fossil ‘explosion’ predates the small shelly fossil ‘explosion’. If the proposed location of the base of the Cambrian in Yunnan is accepted, the small shelly fossil ‘explosion’ concept and its relationship to the boundary would not be greatly modified. The trace fossil ‘explosion’, however, would no longer indicate the base of the Cambrian and the ranges of some trace fossils would be extended into the Precambrian.  相似文献   

7.
In the Sand?kl? region of the Taurus Range of Turkey, greater than 3000 m in thickness metamorphosed siliciclastics and volcanics (Kocayayla Group) underlies the trilobite-and conodont-bearing Middle-Late Cambrian Hudai Quartzite and Çaltepe Formation.The Kocayayla Group, previously regarded as Infracambrian or Precambrian, is dated for the first time as Early Cambrian on the basis of trace fossils. Cruziana ?fasciculata, C. ?salomonis, ?Cruziana isp., ?Diplichnites isp., Monomorphichnus isp., Petalichnus isp., Rusophycus ?avalonensis, R. ?latus, Arenicolites isp., cf. Altichnus foeyni, Planolites isp., Skolithos isp., and ?Treptichnus isp. have been recognised. These trace fossils are considered Tommotian or younger in age but older than the overlying, trilobite and conodont bearing Middle Cambrian limestones of the Çaltepe Formation. The trace fossils were likely produced by trilobites, suspension feeding annelids and deposit feeding “worms”, probably polychaetes. Sections bearing abundant Skolithos represent the Skolithos ichnofacies, which is typical of high energy environments with loose sandy, well sorted to slightly muddy substrates in intertidal to shallow subtidal zones. The other trace fossils represent the Cruziana ichnofacies, which is typical of subtidal, poorly sorted and soft substrates, from moderate energy to low energy environments between the fairweather and storm wave base.The Kocayayla Group was deposited at an early stage in a shallow marine stable shelf condition. The shelf subsided in a later stage and was affected by normal faults along which mafic and felsic volcanic rocks erupted. The volcanic activity had ceased and a shallow marine clastic sedimentation took place in the final stage of the shelf development. The Kocayayla Group was deformed and metamorphosed before the deposition of the trilobite-bearing Middle-Upper Cambrian succession.  相似文献   

8.
Abstract: The Westbury Formation (Rhaetian) beds of Westbury Garden Cliff, Westbury‐on‐Severn, west of Gloucester, Britain, show an unusual combination of features. Both deep water and emergent characteristics are present within the sediments and the trace fossils. The ichnoassemblage consists of abundant Selenichnites, Planolites beverlyensis and Lockeia with rarer Oniscoidichnus, Chondrites, Rhizocorallium irregulare, Taenidium serpentium, an unusual form of Walcottia and Merostomichnites‐like traces. These trace fossils display an interesting relationship with the sediments: low‐energy Cruziana ichnofacies is found within high‐energy sandstones. The sandstones are interbedded with laminated mudstones, apparently deposited in deep water, but some aspects of the ichnoassemblage, preservation and sedimentation indicate shallower water. One new trace fossil, Radichnus allingtona igen. et isp. nov., closely resembles the traces of modern fiddler crabs and imply emergence, by analogy. This ichnofauna is similar to early stage disaster colonisation in recent experiments in Long Island Sound (south of Connecticut, USA) and with storm‐influenced deposits within the Cardium Formation (Seebe, Alberta, Canada). This indicates a lagoonal environment with influxes of sand and oxygen. Total organic carbon levels were found to fluctuate greatly between stratigraphic layers but remained relatively high. This implies low oxygen conditions. The abundance of sulphur (in pyrite) also supports an interpretation of anoxic conditions, and low sedimentation rates within the shale layers. A restricted shallow basin or lagoonal environment is proposed for the palaeoenvironment, with fluctuating oxygen influencing diversity.  相似文献   

9.
Twenty candidate fossils with claim to be the oldest representative of the Phylum Porifera have been re‐analysed. Three criteria are used to assess each candidate: (i) the diagnostic criteria needed to categorize sponges in the fossil record; (ii) the presence, or absence, of such diagnostic features in the putative poriferan fossils; and (iii) the age constraints for the candidate fossils. All three criteria are critical to the correct interpretation of any fossil and its placement within an evolutionary context. Our analysis shows that no Precambrian fossil candidate yet satisfies all three of these criteria to be a reliable sponge fossil. The oldest widely accepted candidate, Mongolian silica hexacts from c. 545 million years ago (Ma), are here shown to be cruciform arsenopyrite crystals. The oldest reliable sponge remains are siliceous spicules from the basal Cambrian (Protohertzina anabarica Zone) Soltanieh Formation, Iran, which are described and analysed here in detail for the first time. Extensive archaeocyathan sponge reefs emerge and radiate as late as the middle of the Fortunian Stage of the Cambrian and demonstrate a gradual assembly of their skeletal structure through this time coincident with the evolution of other metazoan groups. Since the Porifera are basal in the Metazoa, their presence within the late Proterozoic has been widely anticipated. Molecular clock calibration for the earliest Porifera and Metazoa should now be based on the Iranian hexactinellid material dated to c. 535 Ma. The earliest convincing fossil sponge remains appeared at around the time of the Precambrian‐Cambrian boundary, associated with the great radiation events of that interval.  相似文献   

10.
Full reliefs of Cruziana furcifera from the Lower-Middle Ordovician quartzite sandstone beds (Pochico Formation, southern Spain) points to deep, infaunal burrowing of trilobites. Some specimens show an unusual vertical extension with a wider lower part and a narrower upper part in cross section. They are referred to trilobites, which burrowed deeply in the sediment and were oriented obliquely head down and tail up. Deep burrowing seems to be common for other members of the Cruziana rugosa group, foremost C. rugosa and C. furcifera, less for C. goldfussi. The deep burrowing recorded in the discussed trace fossils can be referred to the earliest common infaunalization caused by trilobites and other arthropods during the Ordovician, probably in a response to a food competition on the sea floor, which promoted a behavioral plasticity within the same taxon or closely related taxa of trilobites.  相似文献   

11.
Thin-bedded, pyrite-rich, fine sandstones and mudstones of the Floian-Dapingian Upper Fezouata Formation contain abundant trace fossils Rusophycus carleyi in close association with a species of the asaphid trilobite Asaphellus. The sizes and shapes of this trilobite and the traces match closely. Five specimens have even been found where an articulated specimen of Asaphellus appears to be directly located over a specimen of Rusophycus carleyi within a thin bed of sandstone, suggesting that the trilobite animal may have been trapped on top of a trace that it had just made. Such intimate associations between a putative tracemaker and a trace are rare in the fossil record and particularly rare for Trilobita. The number of coxal impressions that form part of R. carleyi, eleven, matches the number expected for an asaphid trilobite (one for each of eight thoracic segments and one for each of three post-oral cephalic appendages). Impressions of the hypostome, thoracic tip impressions, cephalic margin, and pygidial margin in a few of the traces also match those of this asaphid trilobite. R. carleyi has been found in Ordovician strata of other parts of the world in association with asaphid trilobites.  相似文献   

12.
Balseiro, D., Waisfeld, B.G. & Buatois, L.A. 2010: Unusual trilobite biofacies from the Lower Ordovician of the Argentine Cordillera Oriental: new insights into olenid palaeoecology. Lethaia, Vol. 44, pp. 58–75. The study of biofacies has proven to be relevant in the understanding of trilobite palaeoecology, palaeobiogeography and macroevolution. The widespread Olenid biofacies is one of the best known, and is usually interpreted as occuring in dysoxic environments. Tremadocian successions of the Argentinian Cordillera Oriental bear a diverse and long‐studied olenid‐dominated fauna. Based on cluster analysis, five distinct biofacies are defined for the middle Tremadocian (Tr2 stage slice), distributed from shelf (below storm wave base) to lower‐shoreface settings (above fair‐weather wave base). Ordination shows biofacies along two gradients, a bathymetrical one and another related to oxygen content. All of them are dominated both taxonomically and ecologically by olenids. This detailed quantitative palaeoecological study challenges current views suggesting instead that the Olenidae dominated a broad range of environments, from oxygenated shallow‐marine to dysoxic deep‐marine. Comparisons with largely coeval trilobite records from geodynamically and palaeobiogeographically disparate sites suggest that siliciclastic sedimentation appears as the most influential controlling environmental factor upon olenid distribution and dominance. Further comparisons across different climatic belts show that siliciclastic input controlled trilobite diversity gradients, even more than latitude. From an autoecological viewpoint distribution of traditional olenid morphotypes shows no relation to depth or to oxygen content, and at least some members of the group appear to have had the possibility of coping with low oxygen content, rather than being restricted to oxygen‐deficient environments. The analysis performed herein, together with recent research on the group, demonstrate that factors controlling olenid distribution are more complex than previously envisaged. □Biofacies, diversity, Olenidae, palaeoecology, Tremadocian, trilobite.  相似文献   

13.
Lin, J.‐P., Ivantsov, A.Y. & Briggs, D.E.G. 2011: The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia, Vol. 44, pp. 344–349. Many non‐trilobite arthropods occur in Cambrian Burgess Shale‐type (BST) biotas, but most of these are preserved in fine‐grained siliciclastics. Only one important occurrence of Cambrian non‐trilobite arthropods, the Sinsk biota (lower Sinsk Formation, Botomian) from the Siberian Platform, has been discovered in carbonates. The chemical compositions of samples of the enigmatic arthropod Phytophilaspis pergamena Ivantsov, 1999 and the co‐occurring trilobite Jakutus primigenius Ivantsov in Ponomarenko, 2005 from this deposit were analysed. The cuticle of P. pergamena is composed of mainly calcium phosphate and differs from the cuticle of J. primigenius, which contains only calcium carbonate. Phosphatized cuticles are rare among large Cambrian arthropods, except for aglaspidids and a few trilobites. Based on recent phylogenetic studies, phosphatization of arthropod cuticle is likely to have evolved several times. □arthropod cuticle, Burgess Shale‐type preservation, fossil‐diagenesis, phosphatization.  相似文献   

14.
Neil John McMillan 《Ichnos》2013,20(3):203-212
A new genus and species of alga called Sinoglypha nassichuki is identified and described from Guadalupian rocks of the Delaware Basin, New Mexico. It occurs in tilted to almost upright position in laminites generally accepted as being deposited in deep, anoxic water. The fossils are noncalcareous, having a wavy nature. They are not classed as trace fossils of animals. They are leafy, 2–5 cm long and may be preserved in original position.

If Sinoglypha is an alga it leads to the tentative, but not new, conclusion that perhaps the water was not deep but shallow enough for light penetration—30 meters for the upper part of the Bell Canyon Formation.  相似文献   

15.
Abstract: Cambrian trilobites mainly lived on the sea floor, and up till now few, if any, unequivocally planktonic trilobites have been reported from earlier than the Ordovician. The late Cambrian (Furongian) to late Ordovician olenids are a distinctive group of benthic (sea‐floor dwelling) or nekto‐benthic trilobites. Here we show, however, that one recently described, miniaturized and very spiny olenid species, Ctenopyge ceciliae must have been planktonic (passively drifting or feebly swimming in the upper waters of the sea). This interpretation is based not only upon body form but also on the analysis of its visual system and may be one of the earliest records of the planktonic realm being invaded by trilobites.  相似文献   

16.
Trilobites are particularly common Cambrian fossils, but their trophic impact on the rapidly evolving marine ecosystems of that time is difficult to assess, due to uncertainties on how diverse their feeding habits truly were. Gut anatomy might help to constrain inferences on trilobite feeding ecology, but preservation of digestive organs is exceedingly rare. Muscle scars on the glabella, known as ‘frontal auxiliary impressions’ (FAIs), have been interpreted as evidence of the evolution of a pouch‐like organ with powerful extrinsic muscles (i.e. a crop) in some trilobites. Here we describe FAIs in Mesolenellus hyperboreus from Cambrian Stage 4 strata of North Greenland, which represents the oldest example of such structures and their first report in the Suborder Olenellina. Mesolenellus FAIs suggest that the crop in trilobites was clearly differentiated from the rest of the digestive tract, and essentially located under a hypertrophied glabellar frontal lobe. Reviews of the digestive anatomy of trilobite sister‐taxa and the glabellar morphology of the oldest‐known trilobites suggest that the gut of the trilobite ancestor was an essentially simple tract (i.e. no well‐differentiated crop) flanked laterally by numerous midgut glands. A crop first evolved in the Cambrian in groups like olenelloids and (later) paradoxidoids. Using ichnological evidence, we hypothesize that the emergence of olenelloids yields evidence for the evolution of predatory inclinations in a group of arthropods originally dominated by surface‐deposit‐feeders. By allowing the exploitation of a rapidly developing food source, infaunal animals, the diversification of feeding strategies in trilobites might partially explain their unparalleled evolutionary success.  相似文献   

17.
Phosphatic structures are discovered in the tube interior of the hyolithelminth species Hyolithellus vitricus from the Lower Cambrian of the Siberian Platform. Anatomic interpretation of these structures suggests that these small-sized shelly fossils represent the earliest worm-shaped organisms probably closely related to modern Nemathelminthes.  相似文献   

18.
The deep sea has a high biodiversity and a characteristic bathyal fauna. Earlier evidence suggested that at least some shallow‐water species invaded the ecosystem followed by radiation leading to endemic deep‐sea lineages with a genetic and/or morphological similarity to their shallow‐water counterparts. The nematode Halomonhystera disjuncta has been reported from shallow‐water habitats and the deep sea [Håkon Mosby mud volcano (HMMV)], but the morphological features and the phylogenetic relationships between deep‐sea and shallow‐water representatives remain largely unknown. Furthermore, nothing is known about the genetic structure of the H. disjuncta population within the HMMV. This study is the first integrative approach in which the morphological and phylogenetic relationships between a deep‐sea and shallow‐water free‐living nematode species are investigated. To elucidate the phylogenetic relationships, we analysed the mitochondrial gene Cytochrome oxidase c subunit I (COI) and three nuclear ribosomal genes (Internal Transcribed Spacer region, 18S and the D2D3 region of 28S). Our results show that deep‐sea nematodes comprise an endemic lineage compared to the shallow‐water representatives with different morphometric features. COI genetic divergence between the deep‐sea and shallow‐water specimens ranges between 19.1% and 25.2%. Taking these findings into account, we conclude that the deep‐sea form is a new species. amova revealed no genetic structure across the HMMV, suggesting that nematodes are able to disperse efficiently in the mud volcano.  相似文献   

19.
Abstract: Twenty‐nine species of bryozoans from the Upper Ordovician–Lower Silurian Pin Formation (Spiti, India) have been identified. Eight of these are new: Trematopora minima, Ulrichostylus bhargavai, Ptilodictya exiliformis, Phaenopora ordinarius, Oanduellina himalayaica, Pesnastylus? vesiculosum, Ralfina? originalis and Pinocladia triangulata. The fossil record and facies analyses of the area investigated indicate shallow‐water conditions within the subtropical–tropical realm. The distribution pattern of fossils among the Ordovician/Silurian succession on the Northern Gondwana shelf and the influence of the Late Ordovician cooling phases on marine organisms are distinctive owing to a dramatic reduction in diversity globally. As far as the bryozoan taxa of Spiti are concerned, only one (Helopora fragilis) of the 29 species was recorded above the Ordovician/Silurian boundary. Observed bryozoan communities are very similar to faunas of Laurentia, the Baltic, Siberia and southern China of early–late Ordovician age.  相似文献   

20.
Latest Precambrian to Early Palaeozoic biosphere evolution triggered changes in early diagenesis and carbonate precipitation which fed back to biodiversity through colonization of hard substrates. Progressive increase in the depth and intensity of bioturbation and bio‐irrigation lowered the zone of early carbonate cementation in the uppermost sediment column. This firstly led to a decline in the abundance of the flat‐pebble conglomerates which had been a common feature of Cambrian and Early Ordovician successions, replaced by the peak and subsequent decline in the Palaeozoic abundance of submarine hardgrounds. The availability of very widespread lithified sea floors in shallow subtidal settings during the Ordovician promoted a rapid expansion in sclerobiont diversity and contributed to the Great Ordovician Biodiversification Event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号