首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 4-carboxymethylen-4-sulfo-but-2-en-olide (4-sulfomuconolactone) hydrolases from Hydrogenophaga intermedia strain S1 and Agrobacterium radiobacter strain S2 are part of a modified protocatechuate pathway responsible for the degradation of 4-sulfocatechol. In both strains, the hydrolase-encoding genes occur downstream of those encoding the enzymes that catalyze the lactonization of 3-sulfomuconate. The deduced amino acid sequences of the 4-sulfomuconolactone hydrolases demonstrated the highest degree of sequence identity to 2-pyrone-4,6-dicarboxylate hydrolases, which take part in the meta cleavage pathway of protocatechuate. The 4-sulfomuconolactone hydrolases did not convert 2-pyrone-4,6-dicarboxylate, and the 2-pyrone-4,6-dicarboxylate hydrolase from Sphingomonas paucimobilis SYK-6 did not convert 4-sulfomuconolactone. Nevertheless, the presence of highly conserved histidine residues in the 4-sulfomuconolactone and the 2-pyrone-4,6-dicarboxylate hydrolases and some further sequence similarities suggested that both enzymes belong to the metallo-dependent hydrolases (the "amidohydrolase superfamily"). The 4-sulfomuconolactone hydrolases were heterologously expressed as His-tagged enzyme variants. Gel filtration experiments suggested that the enzymes are present as monomers in solution, with molecular weights of approximately 33,000 to 35,000. 4-Sulfomuconolactone was converted by sulfomuconolactone hydrolases to stoichiometric amounts of maleylacetate and sulfite. The 4-sulfomuconolactone hydrolases from both strains showed pH optima at pH 7 to 7.5 and rather similar catalytic constant (k(cat)/K(M))values. The suggested 4-sulfocatechol pathway from 4-sulfocatechol to maleylacetate was confirmed by in situ nuclear magnetic resonance analysis using the recombinantly expressed enzymes.  相似文献   

2.
Sphingomonas paucimobilis SYK-6 is able to grow on a wide variety of dimeric lignin compounds with guaiacyl moieties, which are converted into protocatechuate by the actions of lignin degradation enzymes in this strain. Protocatechuate is a key metabolite in the SYK-6 degradation of lignin compounds with guaiacyl moieties, and it is thought that it degrades to pyruvate and oxaloacetate via the protocatechuate 4,5-cleavage pathway. In a 10.5-kb EcoRI fragment carrying the protocatechuate 4,5-dioxygenase gene (ligAB) (Y. Noda, S. Nishikawa, K. Shiozuka, H. Kadokura, H. Nakajima, K. Yoda, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki. J. Bacteriol. 172:2704–2709, 1990), we found the ligI gene encoding 2-pyrone-4,6-dicarboxylic acid (PDC) hydrolase. PDC hydrolase is a member of this pathway and catalyzes the interconversion between PDC and 4-carboxy-2-hydroxymuconic acid (CHM). The ligI gene is thought to be transcribed divergently from ligAB and consists of an 879-bp open reading frame encoding a polypeptide with a molecular mass of 32,737 Da. The ligI gene product (LigI), expressed in Escherichia coli, was purified to near-homogeneity and was estimated to be a monomer (31.6 kDa) by gel filtration chromatography. The isoelectric point was determined to be 4.9. The optimum pH for hydrolysis of PDC is 8.5, the optimum pH for synthesis of PDC is 6.0 to 7.5, and the Km values for PDC and CHM are 74 and 49 μM, respectively. LigI activity was inhibited by the addition of thiol reagents, suggesting that the cysteine residue is a catalytic site. LigI is more resistant to metal ion inhibition than the PDC hydrolases of Pseudomonas ochraceae (K. Maruyama, J. Biochem. 93:557–565, 1983) and Comamonas testosteroni (P. J. Kersten, S. Dagley, J. W. Whittaker, D. M. Arciero, and J. D. Lipscomb, J. Bacteriol. 152:1154–1162, 1982). The insertional inactivation of the ligI gene in S. paucimobilis SYK-6 led to the complete loss of PDC hydrolase activity and to a growth defect on vanillic acid; it did not affect growth on syringic acid. These results indicate that the ligI gene is essential for the growth of SYK-6 on vanillic acid but is not responsible for the growth of SYK-6 on syringic acid.  相似文献   

3.
2-Pyrone-4,6-dicarboxylate hydrolase was purified from 4-hydroxybenzoate-grown Pseudomonas testosteroni. Gel filtration and electrophoretic measurements indicated that the preparation was homogeneous and gave a molecular weight of 37,200 for the single subunit of the enzyme. Hydrolytic activity was dependent upon a functioning sulfhydryl group(s) and was freely reversible; the equilibrium position was dependent upon pH, with equimolar amounts of pyrone and open-chain form present at pH 7.9. Since the hydrolase was strongly induced when the nonfluorescent organisms P. testosteroni and P. acidovorans grew with 4-hydroxybenzoate, it is suggested that 2-pyrone-4,6-dicarboxylate is a normal intermediate in the meta fission degradative pathway of protocatechuate. Laboratory strains of fluorescent pseudomonads did not metabolize 2-pyrone-4,6-dicarboxylate, but a strain of P. putida was isolated from soil that utilized this compound for growth; the hydrolase was then induced, but it was absent from extracts of 4-hydroxybenzoate-grown cells that readily catabolized protocatechuate by ortho fission reactions. 2-Pyrone-4,6-dicarboxylic acid was the major product formed when gallic acid was oxidized by purified protocatechuate 3,4-dioxygenase. Protocatechuate 4,5-dioxygenase gave only the open-chain ring fission product when gallic acid was oxidized, but the enzyme attacked 3-O-methylgallic acid, giving 2-pyrone-4,6-dicarboxylic acid as the major product. Cell suspensions of 4-hydroxybenzoate-grown P. testosteroni readily oxidized 3-O-methylgallate with accumulation of methanol.  相似文献   

4.
Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate and 3-O-methylgallate (3MGA), respectively. 3MGA is metabolized via multiple pathways involving 3MGA 3,4-dioxygenase, protocatechuate 4,5-dioxygenase (LigAB), and gallate dioxygenase whereas protocatechuate is degraded via the protocatechuate 4,5-cleavage pathway. Here the secondary role of LigAB in syringate metabolism is investigated. The reaction product of 3MGA catalyzed by His-tagged LigAB was identified as 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) and 2-pyrone-4,6-dicarboxylate (PDC), indicating that 3MGA is transformed to CHMOD and PDC by both reactions catalyzed by DesZ and LigAB. Mutant analysis revealed that the 3MGA catabolic pathways involving LigAB are functional in SYK-6.  相似文献   

5.
Four strains of gram-negative bacteria capable of growing at the expense of 5-chlorovanillate were isolated from soil, and the metabolism of one strain was studied in particular detail. In the presence of alpha, alpha'-bipyridyl, a suspension of 5-chlorovanillate-grown cells accumulated 5-chloroprotocatechuate from 5-chlorovanillate; in the absence of inhibitor these compounds, and various other 5-substituted protocatechuates and vanillates, were oxidized to completion. Cell suspensions of this strain grown on 5-chlorovanillate or vanillate released chloride quantitatively from 5-chlorovanillate and released methanol from syringate. Extracts of cells grown with 4-hydroxybenzoate, vanillate, or syringate possessed high levels of both protocatechuate 4,5-dioxygenase and 2-pyrone-4,6-dicarboxylate hydrolase; extracts from acetate-grown cells did not. Protocatechuate 4,5-dioxygenase, purified from strains that could grow with 5-chlorovanillate, oxidized 5-halogeno-protocatechuates and 3-O-methylgallate with the formation of 2-pyrone-4,6-dicarboxylate. A crude extract converted 5-chloroprotocatechuate into pyruvate plus oxaloacetate. On the basis of these observations, a meta-fission reaction sequence is proposed for the bacterial degradation of vanillate and protocatechuate substituted at C-5 of the benzene ring with halogen or methoxyl.  相似文献   

6.
Hass MA  Christensen HE  Zhang J  Led JJ 《Biochemistry》2007,46(50):14619-14628
Exchange on the microsecond time scale between the protonated and deprotonated forms of His92 in the copper site of reduced plastocyanin from the cyanobacteria Anabaena variabilis was monitored using 15N NMR relaxation measurements. On the basis of the dependence of the kinetics on pH and phosphate buffer concentration, we propose a two-step model for the protonation of the copper site in agreement with previous crystallographic studies. It is shown that the proton transfer is the rate-limiting step in the reaction at low buffer concentrations, whereas at high buffer concentrations, another step becomes rate-limiting. We suggest that the latter step is a concerted dissociation of His92 from the Cu(I) ion and a 180 degrees rotation of the imidazole ring, which precede the protonation. The first-order rate constant for the dissociation of His92 from the Cu(I) ion is estimated to be 2.4 x 10(4) s(-1). Also, a cooperative effect of the protonation of the remote His61 on the protonation of His92 and the redox properties of the protein was investigated by substituting His61 with asparagine. The mutation causes a modest change in both the pKa value of His92 and the redox potential of the protein.  相似文献   

7.
Bovine pancreatic ribonuclease A (RNase A) has a conserved His ... Asp catalytic dyad in its active site. Structural analyses had indicated that Asp121 forms a hydrogen bond with His119, which serves as an acid during catalysis of RNA cleavage. The enzyme contains three other histidine residues including His12, which is also in the active site. Here, 1H-NMR spectra of wild-type RNase A and the D121N and D121A variants were analyzed thoroughly as a function of pH. The effect of replacing Asp121 on the microscopic pKa values of the histidine residues is modest: none change by more than 0.2 units. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. In the presence of the reaction product, uridine 3'-phosphate (3'-UMP), protonation of one active-site histidine residue favors protonation of the other. This finding is consistent with the phosphoryl group of 3'-UMP interacting more strongly with the two active-site histidine residues when both are protonated. Comparison of the titration curves of the unliganded enzyme with that obtained in the presence of different concentrations of 3'-UMP shows that a second molecule of 3'-UMP can bind to the enzyme. Together, the data indicate that the aspartate residue in the His ... Asp catalytic dyad of RNase A has a measurable but modest effect on the ionization of the adjacent histidine residue.  相似文献   

8.
Klebsiella aerogenes urease uses a dinuclear nickel active site to catalyze urea hydrolysis at >10(14)-fold the spontaneous rate. To better define the enzyme mechanism, we examined the kinetics and structures for a suite of site-directed variants involving four residues at the active site: His320, His219, Asp221, and Arg336. Compared to wild-type urease, the H320A, H320N, and H320Q variants exhibit similar approximately 10(-)(5)-fold deficiencies in rates, modest K(m) changes, and disorders in the peptide flap covering their active sites. The pH profiles for these mutant enzymes are anomalous with optima near 6 and shoulders that extend to pH 9. H219A urease exhibits 10(3)-fold increased K(m) over that of native enzyme, whereas the increase is less marked ( approximately 10(2)-fold) in the H219N and H219Q variants that retain hydrogen bonding capability. Structures for these variants show clearly resolved active site water molecules covered by well-ordered peptide flaps. Whereas the D221N variant is only moderately affected compared to wild-type enzyme, D221A urease possesses low activity ( approximately 10(-)(3) that of native enzyme), a small increase in K(m), and a pH 5 optimum. The crystal structure for D221A urease is reminiscent of the His320 variants. The R336Q enzyme has a approximately 10(-)(4)-fold decreased catalytic rate with near-normal pH dependence and an unaffected K(m). Phenylglyoxal inactivates the R336Q variant at over half the rate observed for native enzyme, demonstrating that modification of non-active-site arginines can eliminate activity, perhaps by affecting the peptide flap. Our data favor a mechanism in which His219 helps to polarize the substrate carbonyl group, a metal-bound terminal hydroxide or bridging oxo-dianion attacks urea to form a tetrahedral intermediate, and protonation occurs via the general acid His320 with Asp221 and Arg336 orienting and influencing the acidity of this residue. Furthermore, we conclude that the simple bell-shaped pH dependence of k(cat) and k(cat)/K(m) for the native enzyme masks a more complex underlying pH dependence involving at least four pK(a)s.  相似文献   

9.
10.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. VSV-induced membrane fusion occurs at a very narrow pH range, between 6.2 and 5.8, suggesting that His protonation is required for this process. To investigate the role of His in VSV fusion, we chemically modified these residues using diethylpyrocarbonate (DEPC). We found that DEPC treatment inhibited membrane fusion mediated by VSV in a concentration-dependent manner and that the complete inhibition of fusion was fully reversed by incubation of modified virus with hydroxylamine. Fluorescence measurements showed that VSV modification with DEPC abolished pH-induced conformational changes in G protein, suggesting that His protonation drives G protein interaction with the target membrane at acidic pH. Mass spectrometry analysis of tryptic fragments of modified G protein allowed the identification of the putative active His residues. Using synthetic peptides, we showed that the modification of His-148 and His-149 by DEPC, as well as the substitution of these residues by Ala, completely inhibited peptide-induced fusion, suggesting the direct participation of these His in VSV fusion.  相似文献   

11.
Spectroscopic properties, amino acid sequence, electron transfer kinetics, and crystal structures of the oxidized (at 1.7 A resolution) and reduced form (at 1.8 A resolution) of a novel plastocyanin from the fern Dryopteris crassirhizoma are presented. Kinetic studies show that the reduced form of Dryopteris plastocyanin remains redox-active at low pH, under conditions where the oxidation of the reduced form of other plastocyanins is inhibited by the protonation of a solvent-exposed active site residue, His87 (equivalent to His90 in Dryopteris plastocyanin). The x-ray crystal structure analysis of Dryopteris plastocyanin reveals pi-pi stacking between Phe12 and His90, suggesting that the active site is uniquely protected against inactivation. Like higher plant plastocyanins, Dryopteris plastocyanin has an acidic patch, but this patch is located closer to the solvent-exposed active site His residue, and the total number of acidic residues is smaller. In the reactions of Dryopteris plastocyanin with inorganic redox reagents, the acidic patch (the "remote" site) and the hydrophobic patch surrounding His90 (the "adjacent" site) are equally efficient for electron transfer. These results indicate the significance of the lack of protonation at the active site of Dryopteris plastocyanin, the equivalence of the two electron transfer sites in this protein, and a possibility of obtaining a novel insight into the photosynthetic electron transfer system of the first vascular plant fern, including its molecular evolutionary aspects. This is the first report on the characterization of plastocyanin and the first three-dimensional protein structure from fern plant.  相似文献   

12.
Asn112 is located at the active site of thermolysin, 5-8 A from the catalytic Zn2+ and catalytic residues Glu143 and His231. When Asn112 was replaced with Ala, Asp, Glu, Lys, His, and Arg by site-directed mutagenesis, the mutant enzymes N112D and N112E, in which Asn112 is replaced with Asp and Glu, respectively, were secreted as an active form into Escherichia coli culture medium, while the other four were not. In the hydrolysis of a neutral substrate N-[3-(2-furyl)acryloyl]-Gly-L-Leu amide, the kcat/Km values of N112D and N112E exhibited bell-shaped pH-dependence, as did the wild-type thermolysin (WT). The acidic pKa of N112D was 5.7 +/- 0.1, higher by 0.4 +/- 0.2 units than that of WT, suggesting that the introduced negative charge suppressed the protonation of Glu143 or Zn2+-OH. In the hydrolysis of a negatively charged substrate, N-carbobenzoxy-l-Asp-l-Phe methyl ester (ZDFM), the pH-dependence of kcat/Km of the mutants decreased with increase in pH from 5.5 to 8.5, while that of WT was bell-shaped. This difference might be explained by the electrostatic repulsion between the introduced Asp/Glu and ZDFM, suggesting that introducing ionizing residues into the active site of thermolysin might be an effective means of modifying its pH-activity profile.  相似文献   

13.
Mutational analysis has previously indicated that D83 and E98 residues are essential for DNA cleavage activity and presumably chelate a Mg2+ ion at the active site of MunI restriction enzyme. In the absence of metal ions, protonation of an ionizable residue with a pKa > 7.0, most likely one of the active site carboxylates, controls the DNA binding specificity of MunI [Lagunavicius, A., Grazulis, S., Balciunaite, E., Vainius, D., and Siksnys, V. (1997) Biochemistry 36, 11093-11099.]. Thus, competition between H+ and Mg2+ binding at the active site of MunI presumably plays an important role in catalysis/binding. In the present study we have identified elementary steps and intermediates in the reaction pathway of plasmid DNA cleavage by MunI and elucidated the effect of pH and Mg2+ ions on the individual steps of the DNA cleavage reaction. The kinetic analysis indicated that the multiple-turnover rate of plasmid cleavage by MunI is limited by product release throughout the pH range 6.0-9.3. Quenched-flow experiments revealed that open circle DNA is an obligatory intermediate in the reaction pathway. Under optimal reaction conditions, open circle DNA remains bound to the MunI; however it is released into the solution at low [MgCl2]. Rate constants for the phoshodiester bond hydrolysis of the first (k1) and second (k2) strand of plasmid DNA at pH 7.0 and 10 mM MgCl2 more than 100-fold exceed the kcat value which is limited by product dissociation. The analysis of the pH and [Mg2+] dependences of k1 and k2 revealed that both H+ and Mg2+ ions compete for the binding to the same residue at the active site of MunI. Thus, the decreased rate of phosphodiester hydrolysis by MunI at pH < 7.0 may be due to the reduction of affinity for the Mg2+ binding at the active site. Kinetic analysis of DNA cleavage by MunI yielded estimates for the association-dissociation rate constants of enzyme-substrate complex and demonstrated the decreased stability of the MunI-DNA complex at pH values above 8.0.  相似文献   

14.
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes.  相似文献   

15.
The Fv fragment from an anti-dansyl antibody was optimally crystallized into two crystal forms having slightly different lattice dimensions at pH 5.25 and 6.75. The two crystal structures were determined and refined at high resolution at 112 K (at 1.45 A for the crystal at pH 5.25 and at 1.55 A for that at pH 6.75). In the two crystal structures, marked differences were identified in the first half of CDRH3 s having an amino acid sequence of Ile95H-Tyr96H-Tyr97H-His98H-Tyr99H-Pro1 00H-Trp100aH-Phe100bH-Ala101H- Tyr102H. NMR pH titration experiments revealed the p Kavalues of four histidine residues (His27dL, His93L, His55H and His98H) exposed to solvent. Only His98H (p Ka=6.3) completely changed its protonation state between the two crystallization conditions. In addition, the environmental structures including hydration water molecules around the four histidine residues were carefully compared. While the hydration structures around His27dL, His93L and His55H were almost invariant between the two crystal structures, those around His98Hs showed great difference in spite of the small conformational difference of His98H between the two crystal structures. These spectroscopic and crystallographic findings suggested that the change in the protonation state in His98H was responsible for the structural differences between pH 5.25 and 6.75. In addition, the most plausible binding site of the dansyl group was mapped into the present structural models with our previous NMR experimental results. The complementarity-determining regions H1, H3 and the N-terminal region in the VH domain formed the site. The side-chain of Tyr96H occupied the site and interacted with Phe27H of H1, giving a clue for the binding mode of the dansyl group in the site.  相似文献   

16.
The neutron structure of wild-type human carbonic anhydrase II at pH 7.8 has been determined to 2.0 ? resolution. Detailed analysis and comparison to the previously determined structure at pH 10.0 show important differences in the protonation of key catalytic residues in the active site as well as a rearrangement of the H-bonded water network. For the first time, a completed H-bonded network stretching from the Zn-bound solvent to the proton shuttling residue, His64, has been directly observed.  相似文献   

17.
Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an unusually large contraction of -82 +/- 3 ml/mol, an enthalpy change of 8 +/- 1 kcal/mol, and an apparent bimolecular rate constant of (0.77 +/- 0.03) x 10(10) M(-1) s(-1). Our experiments evidence a rate-limiting step for this process at high ApoMb concentrations, characterized by a value of (0. 60 +/- 0.07) x 10(6) s(-1). The second protonation reaction at pH 7. 0 can be attributed to neutralization of carboxylate groups and is accompanied by an apparent expansion of 3.4 +/- 0.2 ml/mol, occurring with an apparent bimolecular rate constant of (1.25 +/- 0.02) x 10(11) M(-1) s(-1), and a reaction enthalpy of about 2 kcal/mol. The activation energy for the processes associated with the protonation of His24 and His119 is 16.2 +/- 0.9 kcal/mol, whereas that for the neutralization of carboxylates is 9.2 +/- 0.9 kcal/mol. At pH 4.5 ApoMb is in a partially unfolded state (I) and rapid acidification experiments evidence only the process assigned to carboxylate protonation. The unusually large contraction and the high energetic barrier observed at pH 7.0 for the protonation of the His residues suggests that the formation of the compact acid intermediate involves a rate-limiting step after protonation.  相似文献   

18.
The dielectric constant in the active site cleft of subtilisin from Bacillus amyloliquefaciens has been probed by mutating charged residues on the rim and measuring the effect on the pKa value of the active site histidine (His64) by kinetics. Mutation of a negatively charged surface residue, which is 12 to 13 A from His64, to an uncharged one Asp----Ser99) lowers the pKa of the histidine by up to 0.4 unit at low ionic strength (0.005 to 0.01 M). This corresponds to an apparent dielectric constant of about 40 to 50 between Asp99 and His64. The mutation is in an external loop that is known to tolerate a serine at position 99 from homologies with subtilisins from other bacilli. The environment between His64 and Asp99 is predominantly protein. Another charged residue that is at a similar distance from His64 (14 to 15 A) and is also in an external loop that is known to tolerate a serine residue is Glu156, at the opposite side of the active site. There is only water in a direct line between His64 and Glu156. Mutation of Glu----Ser156 also lowers the pKa of His64 by up to 0.4 unit at low ionic strength. This change again corresponds to an apparent dielectric constant of about 40 to 50. The pKa values were determined from the pH dependence of kcat/KM for the hydrolysis of peptide substrates, with a precision of typically +/- 0.02 unit. The following suggests that the changes in pKa are real and not artefacts of experimental conditions: Hill plots of the data for pKa determination have gradients (h) of -1.00(+/- 0.02), showing that there are negligible systematic deviations from theoretical ionization curves involving a monobasic acid: the pH dependence for the hydrolysis of two different substrates (succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanyl p-nitroanilide and benzoyl-L-valyl-L-glycyl-L-arginyl p-nitroanilide) gives identical results so that the pKa is independent of substrate; the pH dependence is unaffected by changing the concentration of enzyme, so that aggregation is not affecting the results; the shift in pKa is masked by high ionic strength, as expected qualitatively for ionic shielding of electrostatic interactions.  相似文献   

19.
Phosphotriesterase-like lactonases (PLLs) have received much attention because of their physical and chemical properties. They may have widespread applications in various fields. For example, they show potential for quorum-sensing signaling pathways and organophosphorus (OP) detoxification in agricultural science. However, the mechanism by which PLLs hydrolyze, which involves OP compounds and lactones and a variety of distinct catalytic efficiencies, has only rarely been explored. In the present study, molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of DrPLL, a member of the PLL superfamily in Deinococcus radiodurans, bound to two substrates, δ-nonanoic lactone and paraoxon. It has been observed that there is a 16-fold increase in the catalytic efficiency of the two mutant strains of DrPLL (F26G/C72I) vs. the wild-type enzyme toward the hydrolysis of paraoxon, but an explanation for this behavior is currently lacking. The analysis of the molecular trajectories of DrPLL bound to δ-nonanoic lactone indicated that lactone-induced conformational changes take place in loop 8, which is near the active site. Binding to paraoxon may lead to conformational displacement of loop 1 residues, which could lead to the deformation of the active site and so trigger the entry of the paraoxon into the active site. The efficiency of the F26G/C72I mutant was increased by decreasing the displacement of loop 1 residues and increasing the flexibility of loop 8 residues. These results provide a molecular-level explanation for the experimental behavior.  相似文献   

20.
We present the structure of LinB, a 33-kDa haloalkane dehalogenase from Sphingomonas paucimobilis UT26, at 0.95 A resolution. The data have allowed us to directly observe the anisotropic motions of the catalytic residues. In particular, the side-chain of the catalytic nucleophile, Asp108, displays a high degree of disorder. It has been modeled in two conformations, one similar to that observed previously (conformation A) and one strained (conformation B) that approached the catalytic base (His272). The strain in conformation B was mainly in the C(alpha)-C(beta)-C(gamma) angle (126 degrees ) that deviated by 13.4 degrees from the "ideal" bond angle of 112.6 degrees. On the basis of these observations, we propose a role for the charge state of the catalytic histidine in determining the geometry of the catalytic residues. We hypothesized that double-protonation of the catalytic base (His272) reduces the distance between the side-chain of this residue and that of the Asp108. The results of molecular dynamics simulations were consistent with the structural data showing that protonation of the His272 side-chain nitrogen atoms does indeed reduce the distance between the side-chains of the residues in question, although the simulations failed to demonstrate the same degree of strain in the Asp108 C(alpha)-C(beta)-C(gamma) angle. Instead, the changes in the molecular dynamics structures were distributed over several bond and dihedral angles. Quantum mechanics calculations on LinB with 1-chloro-2,2-dimethylpropane as a substrate were performed to determine which active site conformations and protonation states were most likely to result in catalysis. It was shown that His272 singly protonated at N(delta)(1) and Asp108 in conformation A gave the most exothermic reaction (DeltaH = -22 kcal/mol). With His272 doubly protonated at N(delta)(1) and N(epsilon)(2), the reactions were only slightly exothermic or were endothermic. In all calculations starting with Asp108 in conformation B, the Asp108 C(alpha)-C(beta)-C(gamma) angle changed during the reaction and the Asp108 moved to conformation A. The results presented here indicate that the positions of the catalytic residues and charge state of the catalytic base are important for determining reaction energetics in LinB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号