首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim This study aims to elucidate the phylogeography of the murid rodent Lemniscomys striatus and to evaluate the relative roles of ecological change, habitat patchiness, rivers and geological barriers in structuring patterns of diversity. Location Sub‐Saharan Africa. Methods The extent of phylogeographic patterns and molecular genetic diversity (cytochrome b gene) were addressed in a survey of 128 individuals of L. striatus from 42 localities. Using maximum parsimony, maximum likelihood, Bayesian, network and genetic structure analyses, we inferred intraspecific relationships and tested hypotheses for historical patterns of gene flow within L. striatus. Results Our results identified four major geographical clades within L. striatus: a West African clade, a Benin‐Nigeria clade, a Central African clade, and an East African clade. Several subclades were identified within these four major clades. Restricted gene flow with isolation by distance was recorded, which is congruent with the low dispersal ability of such a small murid rodent. No clear signal of population expansion was detected within clades or subclades. Main conclusions The western rift system and the Volta and Niger rivers may have acted as long‐term extrinsic barriers to gene flow, resulting in the emergence of the four main clades of L. striatus. The observed pattern of mitochondrial variation observed within each clade probably results from late Pleistocene climatic and vegetation changes: during adverse conditions (forest expansion), L. striatus may have survived only in refugia, and then experienced range expansion under favourable conditions (savanna expansion).  相似文献   

2.
Five new taxa with affinities to extant lineages that diverged at an early stage from the main line of eudicot evolution are established from the Early Cretaceous (late Aptian or early Albian) Vale de Agua locality, Portugal. Staminate flowers of Lusistemon striatus and pistillate flowers of Lusicarpus planatus are unisexual without rudiments of the opposite gender. They are linked by the association of an unusual pollen type found in situ in the stamens and adhering to the stigmatic surface. The staminate flower, Lusistemon striatus, is composed of six stamens subtended by small perianth parts. The arrangement of the stamens is difficult to ascertain, but their variable sizes suggests a spiral arrangement. Pollen found in situ is tricolpate and striate with densely‐spaced, sparsely diverging and anastomosing muri that are aligned more or less parallel to the polar axis. The muri have a conspicuous supratectal ornamentation of fine transverse ridges. The granular infratectal layer forms an indistinct internal reticulum. The foot layer is thin. Pollen is closely similar to dispersed grains from the Aptian of Egypt described as STRIOTRI‐SEGMUR. It also resembles pollen of the dispersed pollen genus Rutihesperipites, as well as some dispersed pollen assigned to Striatopollis. Pistillate flowers of Lusicarpus planatus consist of a bicarpellate, syncarpous gynoecium borne on a short stalk. The styles are bent outwards and expose the double‐crested stigmatic regions on their ventral sides. The only organ preserved besides the gynoecium is a lateral scale‐like organ at the base of the stalk. Pollen of the same type found in Lusistemon striatus occurs on the stigmatic surface of the carpels. Comparisons with extant taxa demonstrate that Lusistemon and Lusicarpus share many characters with early diverging groups of eudicots, in particular Buxaceae. In addition to the LusistemonLusicarpus flowers, the Vale de Agua samples also contain three other pistillate reproductive structures that may be related to early diverging lineages of eudicots. Silucarpus camptostylus has a bicarpellate and syncarpous gynoecium with two styles; Valecarpus petiolatus and Aguacarpus hirsutus have tricarpellate gynoecia that are distinguished from each other in the shape and extension of the stigma as well as other details.  相似文献   

3.
Lemniscomys striatus was radio‐tracked in the ImperataCymbopogon grassland of the Queen Elizabeth National Park in Uganda. Home range sizes calculated by Ranges V® using the minimum convex Polygon method (at 95%) in the postburnt grassland were on average 4.8 times larger than those before the fire. An inverse relation between home range size and population density was found. Lemniscomys striatus was diurnal with two activity peaks during daylight, but activity ended only after dusk.  相似文献   

4.
Interrelated causes of plant invasion have been gaining increasing recognition. However, research on this subject has mainly focused around conceptual models. Here we explore whether plant–soil biota feedbacks and disturbance, two major factors capable of facilitating invasive plants in introduced ranges, interact to preferentially benefit exotics compared to native plants. We investigated the influence of fire disturbance on plant–soil biota interactions for the invasive Acacia longifolia and two dominant natives (Cytisus striatus and Pinus pinaster) in Portuguese dune systems. In the first experiment, we grew exotic and native plants in soil inoculated with soil biota from unburned or recently burned soils collected in an area with small invasion intensity by A. longifolia. Soil biota effects on the exotic legume A. longifolia changed from neutral to positive after fire, whereas the opposite outcome was observed in the native legume C. striatus, and a change from negative to neutral effects after fire occurred in the native P. pinaster. Fire reduced mycorrhizal colonization in all species and rhizobial colonization in C. striatus but not in A. longifolia. In the second experiment, we grew the exotic and native plants with conspecific and heterospecific soil biota from undisturbed soils (area with low invasion intensity by A. longifolia), and from post‐fire soils (area affected by a fire ~12 years ago and currently heavily invaded by A. longifolia). The exotic benefited more from post‐fire than from undisturbed soil biota, particularly from those associated with natives. Natives did not experience detrimental effects with invasive‐associated soil biota. Our results show that fire disturbance affected the functional interactions between soil biota and plants that may benefit more the exotic than some native species. Disturbance may open a window of opportunity that promotes invader success by altering soil enemy and mutualistic impacts.  相似文献   

5.
This field study describes the camouflage pattern repertoire, associated behaviours and speed of pattern change of Nassau groupers Epinephelus striatus at Little Cayman Island, British West Indies. Three basic camouflaged body patterns were observed under natural conditions and characterized quantitatively. The mean speed of pattern change across the entire body was 4·44 s (range = 0·97–9·87 s); the fastest pattern change as well as contrast change within a fixed pattern occurred within 1 s. Aside from apparent defensive camouflage, E. striatus used camouflage offensively to approach crustacean or fish prey, and three successful predation events were recorded. Although animal camouflage is a widespread tactic, dynamic camouflage is relatively uncommon and has been studied rarely in marine teleosts under natural conditions. The rapid changes observed in E. striatus suggest direct neural control of some skin colouration elements, and comparative studies of functional morphology and behaviour of colour change in other coral‐reef teleosts are likely to reveal new mechanisms and adaptations of dynamic colouration.  相似文献   

6.
Excessive sedimentation is a major threat to coral reefs. It can damage or kill reef-building corals and can prevent the successful settlement of their planktonic larvae. The surgeonfish Ctenochaetus striatus feeds on rocky surfaces by sweeping loose material into its mouth with its flexible, broom-like teeth. In addition, it grasps and removes hard substrates with the aid of its special palate structure. It then transports sediment matter off the reef by defecating the ingested material outside the rocky zone of the reef. We analyzed 150 feces samples of six individuals, differentiating between (1) ingested by sweeping and (2) ingested by scraping, and compared their content with inorganic land-derived and marine sediments trapped at the feeding area. Projections based on fish densities, defecation rates, and quantities as well as composition of sediments collected by traps on the same reef site suggest that C. striatus removes at least 18% of the inorganic sediment sinking onto the reef crest. The eroded share in the exported matter is about 13%. This finding points to a hitherto not verified role of C. striatus as a reef sweeper and reef scraper, whereby the first function is by far dominating.  相似文献   

7.
The trace fossil Zoophycos characterized by complex, three‐dimensional morphology with systematic internal structures occurs throughout the Phanerozoic marine sediments. The specimens of Zoophycos examined herein consist of a downward and helical spreite and are a product of the excretory behaviour of endobenthic detritus feeders. They are divided into two basic types: pre‐Jurassic and post‐Cretaceous types on the basis of whorls of spreiten in a single specimen. The pre‐Jurassic type has fewer than four whorls. In contrast, most of the post‐Cretaceous specimens exhibit spreite with multiple coils more than ten whorls. The abrupt increase in whorl number during the Cretaceous suggests that the sedentary lifestyle of the producer should change from a short‐term stay to long‐term or permanent occupation of the same burrow. Timing of the lifestyle change the Zoophycos producers seems to be closely related to the deep‐seaward migration of their habitats. The change in lifestyle and migration of Zoophycos‐producing animals during the Cretaceous might be attributable to the establishment of eutrophic bottom conditions in the deep sea. These changes seem to be associated with the flux of large amounts of phytodetrital food produced by phytoplankton, which experienced an explosive increase in species diversity during the Late Jurassic to the Late Cretaceous. The series of changes in lifestyle and habitat of the Zoophycos animals during the Late Mesozoic can serve as one piece of geological evidence for the ‘benthic‐pelagic coupling model’.  相似文献   

8.
E Zhang  Yi-Yu Chen 《Hydrobiologia》2004,527(1):25-33
Qianlabeo striatus gen. et sp. nov. is described from a stream tributary to the Beipan Jiang of the upper Zhu Jiang (Pearl River) drainage in Matou, Anshun County, Guizhou Province, China. This monotypic genus is mainly characterized by its oromadibular morphology, namely an upper lip only present in and fully adnate to the side of the upper jaw, not covered by the pendulous rostral fold; the median portion of the upper jaw lacking an upper lip but bearing a thin, flexible and cornified cutting edge that is fully covered by the pendulous rostral fold; a postlabial groove prolonged, extended anteromedially close to the anteromost point of the midline of the lower lip but not to meet with its counterpart. The type species of this genus, Q. striatus has a longitudinal dark stripe along the side of the body.  相似文献   

9.
Aim Vertebrates, palynomorphs and leaf floras each give a different picture of continental biogeography of Northern Gondwana during the Middle Jurassic–Early Cretaceous interval. A new biogeographical marker is required to get a clearer picture. Location Northern part of the Gondwana during the Middle Jurassic–Early Cretaceous interval. Methods Comparisons and correlations of wood data from the literature and new material. Results We have selected Metapodocarpoxylon Dupéron‐Laudoueneix et Pons because it has a restricted distribution, temporally and geographically; it is a well‐defined Mesozoic fossil wood monospecific genus, and there are wide‐ranging data on its distribution. Conclusions Metapodocarpoxylon distribution draws a clear latitudinal belt extending from Lebanon westward to Peru. Climate being the main factor of plant distribution at a global scale, the Metapodocarpoxylon area probably underlines a climatic belt. This has several implications, for example, choosing among different Global Circulation Models or discussing dinosaur distribution.  相似文献   

10.
Spathidiopsis and Placus are the only two genera within the family Placidae. The family has been placed in the class Prostomatea and order Prorodontida because its members have somatic monokinetids with a radial transverse ribbon, a straight non‐overlapping postciliary ribbon, and anteriorly directed non‐overlapping kinetodesmal fibril, an apical cytostome lacking specialized oral cilia, a brosse, and toxicysts. To confirm the stability of this placement, ultrastructural morphology and small subunit rRNA gene sequences of Spathidiopsis socialis, Spathidiopsis buddenbrocki, and Placus striatus were determined. These data were combined with information from other ciliates, and phylogenetic trees were generated using maximum‐likelihood and maximum‐parsimony methods. The analyses confirmed the family Placidae to be a monophyletic group in the Prostomatea with the Placidae a sister group to a Cryptocaryon Coleps Prorodon clade.  相似文献   

11.
12.
It is plausible that specialized ecological interactions constrain geographic ranges. We address this question in neotropical bees, Centris and Epicharis, that collect oils from flowers of Calceolariaceae, Iridaceae, Krameriaceae, Malpighiaceae, Plantaginaceae, or Solanaceae, with different species exploiting between one and five of these families, which either have epithelial oil glands or hair fields. We plotted the level of oil‐host specialization on a clock‐dated phylogeny for 22 of the 35 species of Epicharis and 72 of the 230 species of Centris (genera that are not sister genera) and calculated geographic ranges (km2) for 23 bee species based on collection data from museum specimens. Of the oil‐offering plants, the Malpighiaceae date to the Upper Cretaceous, whereas the other five families are progressively younger. The stem and crown groups of the two bee genera date to the Cretaceous, Eocene, and Oligocene. Shifts between oil hosts from different families are common in Centris, but absent in Epicharis, and the direction is from flowers with epithelial oil glands to flowers with oil hairs, canalized by bees’ oil‐collecting apparatuses, suitable for piercing epithelia or mopping oil from hair fields. With the current data, a link between host specialization and geographic range size could not be detected.  相似文献   

13.
R. Goulder 《Hydrobiologia》1980,72(1-2):131-158
The distribution of Loxodes magnus and L. striatus (Karyorelictida) was investigated in two eutrophic waters (Esthwaite Water and Priest Pot, English Lake District). In the benthos, these species were most abundant at the sediment surface, at deeper sites, and when the bottom water was oxygenated. In the plankton, in Priest Pot, they were found only in the oxygen deficient summer hypolimnion. Experimental studies suggested that L. magnus and L. striatus required access to oxygen. Loxodes was apparently excluded from the oxygenated Priest Pot epilimnion by several adverse factors, one of which was bright light. It was concluded that the ecology of L. magnus and L. striatus resembles, in many ways, that of the advanced ciliates which were found associated with Loxodes.  相似文献   

14.
The carcass and commercial yield traits of Channa striatus were evaluated. Experimental fish were 8‐month‐old snakehead murrels (Channa striatus) weighing 500–700 gm, reared in earthen ponds and cultivated intensively at a rate of 10 000 fingerlings/ha. The fish were given formulated feed for a period of 1 year. Morphometric parameters were measured along with carcass, filleting, and offal traits. The murrel head yield (28.7%) as well as scales and skin yield (11.92%) were recorded. Dressed murrel (evisceration yield) was 89.59% of the live weight. Dressed percentage (minus the head, skin and viscera) was 50.72%. Average meat‐to‐bone filleting ratio was 3.43 of marketable size murrels. Insignificant accumulations of fat deposits on the lining of the abdominal cavity and coating the bowels were noted.  相似文献   

15.
The monophyletic family Zhangsolvidae comprises stout‐bodied brachyceran flies with a long proboscis and occurring only in the Cretaceous, originally known in shale from the Early Cretaceous Laiyang Formation (Fm.) in China (Zhangsolva Nagatomi & Yang), subsequently from limestones of the Early Cretaceous Crato Fm. of Brazil. Cratomyoides Wilkommen is synonymized with Cratomyia Mazzarolo & Amorim, both from the Crato Fm.; Cratomyiidae is synonymized with Zhangsolvidae. Two genera and three species of Zhangsolvidae are described: Buccinatormyia magnifica Arillo, Peñalver & Pérez‐de la Fuente, gen. et sp.n. and B. soplaensis Arillo, Peñalver & Pérez‐de la Fuente, sp.n. , in Albian amber from Las Peñosas Fm. in Spain; and Linguatormyia teletacta Grimaldi, gen. et sp.n. , in Upper Albian–Lower Cenomanian amber from Hukawng Valley in Myanmar. Buccinatormyia soplaensis and Linguatormyia teletacta are unique among all Brachycera, extant or extinct, by their remarkably long, flagellate antennae, about 1.6× the body length in the latter species. A phylogenetic analysis of 52 morphological characters for 35 taxa is presented, 11 taxa being Cretaceous species, which supports placement of the family within Stratiomyomorpha, although not to any particular family within the infraorder. This published work has been registered in Zoobank, http://zoobank.org/urn:lsid:zoobank.org:pub:F32CF887‐7C37‐45D5‐BD6B‐135FE9B729A7 .  相似文献   

16.
Geometric morphometric techniques allow for the direct quantification and analysis of variation in biological shape and have been used in studies in systematic biology. However, these techniques have not been used for species discrimination in the gastropod genus Conus, a major taxon of significant tropical reef predators recognized for their peptide‐based toxins. Here, we used landmark digitization and analysis to show that five species commonly studied for their conotoxins –Conus consors, Conus miles, Conus stercusmuscarum, Conus striatus, and Conus textile – can be effectively distinguished from each other by their shape, as manifested in the results of a principal components analysis (PCA) and the generated thin‐plate splines. Two piscivorous species, C. stercusmuscarum and C. striatus, show clear overlaps in the PCA plot, although each taxon clusters within itself, as does each of the others. The loadings on the first two principal components show that the forms of the shells' aperture and spire are particularly important for discrimination. Phylogenetic analysis using neighbour‐joining methods shows that group separations are comparable with published phylogenetic schemes based on molecular data and feeding mode (i.e. piscivory, vermivory, molluscivory). The results of this study establish the utility of geometric morphometric methods in capturing the interspecific differences in shell form in the genus Conus. This may lead to the utilization of these methods on other gastropod taxa and the creation of species‐recognition programs based on shell shape. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 296–310.  相似文献   

17.
Aim To determine the origins of the host–parasite association between among yellow perch (Perca flavescens[Mitchill]) and the parasites Crepidostomum cooperi Hopkins, Proteocephalus pearsei La Rue and Urocleidus adspectus Beverly Burton. Of secondary interest are the parasites Bunodera luciopercae (Muller) and Proteocephalus percae (Muller) predictably associated with the Eurasian perch. Location The areas considered are the Holarctic, since the upper‐Cretaceous, and contemporary North America. Methods Published and new information from host and parasite phylogenies, palaeontology, palaeogeography and plate tectonics and host biology is incorporated to assess the origins of yellow perch and several of its parasites. This information is used to determine the origins for these host–parasite associations. Results Cladistic analysis suggests a Laurasian origin for Percidae and Perca, and that Perca is sister to the other genera in the family. Parasite phylogenies support a North American origin for the three species associated with yellow perch and a Laurasian origin for B. luciopercae. Proteocephalus pearsei and P. percae are not sister taxa. The fossil record for Perca dates to the Miocene in Europe and the Pleistocene in North America. North America and Europe were connected across the North Atlantic since at least the upper Cretaceous with separation complete by the Miocene. Europe was separated from Asia by the Obik Sea from the late Cretaceous until the Oligocene. Western cordillera orogeny and its accompanying high rates of water flow and Pleistocene glaciation represent barriers to Perca dispersal. Main conclusions The origin of Perca in North America dates at least to the late Oligocene when North America and Europe were connected across the North Atlantic and Europe and Asia were separate landmasses, and does not result from Pleistocene dispersal across Beringia from Asia. The present disjunction of Perca species in North America and Europe is due to the vicariant separation of North America and Europe. Based on the available information, yellow perch and its parasites have a North America origin. The association between yellow perch and the parasites in all cases is a consequence of host switching from other sympatric host species in North America and is not explained by co‐speciation. Even the association between the host‐specific Urocleidus adspectus and yellow perch originated with a host switch and is not due to co‐speciation. The basis for this host switching is geographical and ecological sympatry, especially shared feeding habits, with other North American fish hosts.  相似文献   

18.
19.
Abstract: The mid‐Cretaceous bivalve Goshoraia Tamura, 1977, endemic to Japan, is an early example of shallow‐marine siphonate bivalves of the family Veneridae Rafinesque, 1815. Three species, including one new, are here described: Goshoraia minor Tashiro and Kozai, 1989 (Aptian), G. crenulata (Matsumoto, 1938; Albian–lower Cenomanian) and G. maedai sp. nov. (middle to ?upper Cenomanian). The habitats of Goshoraia have been extensively compared with those of common Cretaceous, nonsiphonate burrowers, such as trigoniids, which range from tidal flat and shoreface to shelf environments. Depth of burial, which can be estimated from the extent of the pallial sinus, increases from the ancestral G. minor to its descendants G. crenulata and G. maedai sp. nov., documenting that the ability to burrow within this genus improved in time. These morphological and palaeoecological changes may be related to the Mesozoic marine revolution during the mid‐Cretaceous.  相似文献   

20.
Divergence time estimates suggest that most clades constituting the fern family Pteridaceae (Polypodiales) were in existence by the Early Cretaceous. However, fossil evidence to corroborate this remains exceedingly rare. Burmese amber is an important source of new information on the radiation of derived fern lineages during the Cretaceous Terrestrial Revolution. This study describes Heinrichsia cheilanthoides gen. et sp. nov., a fern with suggested affinities to Pteridaceae, based on fertile foliage portions preserved in Early Cretaceous (~100 Ma) amber from Myanmar. Heinrichsia cheilanthoides is characterized by a pinnate‐pinnatifid frond that bears apical, marginal sori protected by a pseudoindusium. Sporangia are of the polypod type and contain tetrahedral‐globose, trilete spores with a striate perine. This discovery provides a new calibration point to test and refine molecular clock‐based concepts of the evolutionary history of the Pteridaceae. Heinrichsia cheilanthoides further substantiates the suggestion that the Cretaceous forests of Myanmar were home to a rich fern flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号