首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Resting CD4(+) T cells are the best-defined reservoir of latent human immunodeficiency virus type 1 (HIV-1) infection, but how the reservoir is formed is unclear. Understanding how the reservoir of latently infected cells forms is critical because it is a major barrier to curing HIV infection. The system described here may provide an in vitro model of latent HIV-1 infection in resting CD4(+) T cells. We demonstrated that HIV-1 integrates into the genomes of in vitro-inoculated resting CD4(+) T cells that have not received activating stimuli and have not entered cell cycle stage G(1b). A percentage of the resting CD4(+) T cells that contain integrated DNA produce virus upon stimulation, i.e., are latently infected. Our results show that latent HIV-1 infection occurs in unstimulated resting CD4(+) T cells and suggest a new route for HIV-1 reservoir formation.  相似文献   

4.
Antiretroviral therapy is currently only capable of controlling HIV replication rather than completely eradicating virus from patients. This is due in part to the establishment of a latent virus reservoir in resting CD4+ T cells, which persists even in the presence of HAART. It is thought that forced activation of latently infected cells could induce virus production, allowing targeting of the cell by the immune response. A variety of molecules are able to stimulate HIV from latency. However no tested purging strategy has proven capable of eliminating the infection completely or preventing viral rebound if therapy is stopped. Hence novel latency activation approaches are required. Nanoparticles can offer several advantages over more traditional drug delivery methods, including improved drug solubility, stability, and the ability to simultaneously target multiple different molecules to particular cell or tissue types. Here we describe the development of a novel lipid nanoparticle with the protein kinase C activator bryostatin-2 incorporated (LNP-Bry). These particles can target and activate primary human CD4+ T-cells and stimulate latent virus production from human T-cell lines in vitro and from latently infected cells in a humanized mouse model ex vivo. This activation was synergistically enhanced by the HDAC inhibitor sodium butyrate. Furthermore, LNP-Bry can also be loaded with the protease inhibitor nelfinavir (LNP-Bry-Nel), producing a particle capable of both activating latent virus and inhibiting viral spread. Taken together these data demonstrate the ability of nanotechnological approaches to provide improved methods for activating latent HIV and provide key proof-of-principle experiments showing how novel delivery systems may enhance future HIV therapy.  相似文献   

5.
Although combination therapy allows the suppression of human immunodeficiency virus type 1 (HIV-1) viremia to undetectable levels, eradication has not been achieved because the virus persists in cellular reservoirs, particularly the latent reservoir in resting CD4(+) T lymphocytes. We previously established a simian immunodeficiency virus (SIV)/macaque model to study latency. We describe here a novel mechanism for the induction of SIV from latently infected resting CD4(+) T cells. Several human cell lines including CEMx174 and Epstein-Barr virus-transformed human B-lymphoblastoid cell lines mediated contact-dependent activation of resting macaque T cells and induction of latent SIV. Antibody-blocking assays showed that interactions between the costimulatory molecule CD2 and its ligand CD58 were involved, whereas soluble factors and interactions between T-cell receptors and major histocompatibility complex class II were not. Combinations of specific antibodies to CD2 also induced T-cell activation and virus induction in human resting CD4(+) T cells carrying latent HIV-1. This is the first demonstration that costimulatory signals can induce latent virus without the coengagement of the T-cell receptor, and this study might provide insights into potential pathways to target latent HIV-1.  相似文献   

6.
7.
Highly active antiretroviral therapy (HAART) suppresses human immunodeficiency virus (HIV) replication to undetectable levels but cannot fully eradicate the virus because a small reservoir of CD4+ T cells remains latently infected. Since HIV efficiently infects only activated CD4+ T cells and since latent HIV primarily resides in resting CD4+ T cells, it is generally assumed that latency is established when a productively infected cell recycles to a resting state, trapping the virus in a latent state. In this study, we use a dual reporter virus—HIV Duo-Fluo I, which identifies latently infected cells immediately after infection—to investigate how T cell activation affects the estab-lishment of HIV latency. We show that HIV latency can arise from the direct infection of both resting and activated CD4+ T cells. Importantly, returning productively infected cells to a resting state is not associated with a significant silencing of the integrated HIV. We further show that resting CD4+ T cells from human lymphoid tissue (tonsil, spleen) show increased latency after infection when compared to peripheral blood. Our findings raise significant questions regarding the most commonly accepted model for the establishment of latent HIV and suggest that infection of both resting and activated primary CD4+ T cells produce latency.  相似文献   

8.
9.
Primary viral infections, including primary HIV infection, trigger intense activation of the immune system, with marked expansion of CD38(+)CD8(+) T cells. Whether this expansion involves only viral-specific cells or includes a degree of bystander activation remains a matter of debate. We therefore examined the activation status of EBV-, CMV-, and influenza virus (FLU)-specific CD8(+) T cells during primary HIV infection, in comparison to HIV-specific CD8(+) T cells. The activation markers CD38 and HLA-DR were strongly expressed on HIV-specific CD8(+) T cells. Surprisingly, CD38 expression was also up-regulated on CD8(+) T cells specific for other viruses, albeit to a lesser extent. Activation marker expression returned to normal or near-normal values after 1 year of highly active antiretroviral therapy. HIV viral load correlated with CD38 expression on HIV-specific CD8(+) T cells but also on EBV-, CMV-, and FLU-specific CD8(+) T cells. In primary HIV infection, EBV-specific CD8(+) T cells also showed increased Ki67 expression and decreased Bcl-2 expression, compared with values observed in HIV-seronegative control subjects. These results show that bystander activation occurs during primary HIV infection, even though HIV-specific CD8(+) T cells express the highest level of activation. The role of this bystander activation in lymphocyte homeostasis and HIV pathogenesis remains to be determined.  相似文献   

10.
Human immunodeficiency virus type 1 infection results in a dysfunction of CD4(+) T lymphocytes. The intracellular events contributing to that CD4(+) T-lymphocyte dysfunction remain incompletely elucidated, and it is unclear whether aspects of that dysfunction can be prevented. The present studies were pursued in a rhesus monkey model of AIDS to explore these issues. Loss of the capacity of peripheral blood CD4(+) T lymphocytes to express cytokines was first detected in simian immunodeficiency virus-infected monkeys during the peak of viral replication during primary infection and persisted thereafter. Moreover, infected monkeys with progressive disease had peripheral blood CD4(+) T lymphocytes that expressed significantly less cytokine than infected monkeys that had undetectable viral loads and intact CD4(+) T-lymphocyte counts. Importantly, CD4(+) T lymphocytes from vaccinated monkeys that effectively controlled the replication of a highly pathogenic immunodeficiency virus isolate following a challenge had a preserved functional capacity. These observations suggest that an intact cytokine expression capacity of CD4(+) T lymphocytes is associated with stable clinical status and that effective vaccines can mitigate against CD4(+) T-lymphocyte dysfunction following an AIDS virus infection.  相似文献   

11.
Despite suppression of viremia in patients on highly active antiretroviral therapy (HAART), human immunodeficiency virus type 1 persists in a latent reservoir in the resting memory CD4(+) T lymphocytes and possibly in other reservoirs. To better understand the mechanisms of viral persistence, we established a simian immunodeficiency virus (SIV)-macaque model to mimic the clinical situation of patients on suppressive HAART and developed assays to detect latently infected cells in the SIV-macaque system. In this model, treatment of SIV-infected pig-tailed macaques (Macaca nemestrina) with the combination of 9-R-(2-phosphonomethoxypropyl)adenine (PMPA; tenofovir) and beta-2',3'-dideoxy-3'-thia-5-fluorocytidine (FTC) suppressed the levels of plasma virus to below the limit of detection (100 copies of viral RNA per ml). In treated animals, levels of viremia remained close to or below the limit of detection for up to 6 months except for an isolated "blip" of detectable viremia in each animal. Latent virus was measured in blood, spleen, lymph nodes, and thymus by several different methods. Replication-competent virus was recovered after activation of a 99.5% pure population of resting CD4(+) T lymphocytes from a lymph node of a treated animal. Integrated SIV DNA was detected in resting CD4(+) T cells from spleen, peripheral blood, and various lymph nodes including those draining the gut, the head, and the limbs. In contrast to the wide distribution of latently infected cells in peripheral lymphoid tissues, neither replication-competent virus nor integrated SIV DNA was detected in thymocytes, suggesting that thymocytes are not a major reservoir for virus in pig-tailed macaques. The results provide the first evidence for a latent viral reservoir for SIV in macaques and the most extensive survey of the distribution of latently infected cells in the host.  相似文献   

12.
Because of their relative resistance to viral cytopathic effects, APC can provide an alternative reservoir for latently integrated HIV. We used an HIV-transgenic mouse model in which APC serve as the major source of inducible HIV expression to study mechanisms by which integrated virus can be activated in these cells. When admixed with transgenic APC, activated T lymphocytes provided a major contact-dependent stimulus for viral protein expression in vitro. Using blocking anti-CD154 mAb as well as CD154-deficient T cells, the HIV response induced by activated T lymphocytes was demonstrated to require CD40-CD154 interaction. The role of this pathway in the induction of HIV expression from APC in vivo was further studied in an experimental model involving infection of the HIV-transgenic mice with PLASMODIUM: chabaudi parasites. Enhanced viral production by dendritic cells and macrophages in infected mice was associated with up-regulated CD40 expression. More importantly, in vivo treatment with blocking anti-CD154 mAb markedly reduced viral expression in P. chabaudi-infected animals. Together, these findings indicate that immune activation of integrated HIV can be driven by the costimulatory interaction of activated T cells with APC. Because chronic T cell activation driven by coinfections as well as HIV-1 itself is a characteristic of HIV disease, this pathway may be important in sustaining viral expression from APC reservoirs.  相似文献   

13.
以静息CD4~+T细胞为主的人类免疫缺陷病毒(human immunodeficiency virus,HIV)潜伏库的清除已成为治愈HIV-1感染的主要障碍,人们迫切需要建立一种高通量、可靠的、高灵敏度的方法来定量检测病毒潜伏库的真实大小。本文就目前关于HIV潜伏库的多种定量检测方法进行综述。  相似文献   

14.
While antiretroviral drugs can drive HIV to undetectably low levels in the blood, eradication is hindered by the persistence of long-lived, latently infected memory CD4 T cells. Immune activation therapy aims to eliminate this latent reservoir by reactivating these memory cells, exposing them to removal by the immune system and the cytotoxic effects of active infection. In this paper, we develop a mathematical model that investigates the use of immune activation strategies while limiting virus and latent class rebound. Our model considers infection of two memory classes, central and transitional CD4 T cells and the role that general immune activation therapy has on their elimination. Further, we incorporate ways to control viral rebound by blocking activated cell proliferation through anti proliferation therapy. Using the model, we provide insight into the control of latent infection and subsequently into the long term control of HIV infection.  相似文献   

15.
16.
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) evade containment by CD8(+) T lymphocytes through focused epitope mutations. However, because of limitations in the numbers of viral sequences that can be sampled, traditional sequencing technologies have not provided a true representation of the plasticity of these viruses or the intensity of CD8(+) T lymphocyte-mediated selection pressure. Moreover, the strategy by which CD8(+) T lymphocytes contain evolving viral quasispecies has not been characterized fully. In the present study we have employed ultradeep 454 pyrosequencing of virus and simultaneous staining of CD8(+) T lymphocytes with multiple tetramers in the SIV/rhesus monkey model to explore the coevolution of virus and the cellular immune response during primary infection. We demonstrated that cytotoxic T lymphocyte (CTL)-mediated selection pressure on the infecting virus was manifested by epitope mutations as early as 21 days following infection. We also showed that CD8(+) T lymphocytes cross-recognized wild-type and mutant epitopes and that these cross-reactive cell populations were present at a time when mutant forms of virus were present at frequencies of as low as 1 in 22,000 sequenced clones. Surprisingly, these cross-reactive cells became enriched in the epitope-specific CD8(+) T lymphocyte population as viruses with mutant epitope sequences largely replaced those with epitope sequences of the transmitted virus. These studies demonstrate that mutant epitope-specific CD8(+) T lymphocytes that are present at a time when viral mutant epitope sequences are detected at extremely low frequencies fail to contain the later accumulation and fixation of the mutant epitope sequences in the viral quasispecies.  相似文献   

17.
Human immunodeficiency virus (HIV)-infected individuals exhibit a variety of hematopoietic dysfunctions. The SCID-hu mouse (severe combined immunodeficient mouse transplanted with human fetal thymus and liver tissues) can be used to model the loss of human hematopoietic precursor cell function following HIV infection and has a distinct advantage in that data can be obtained in the absence of confounding factors often seen in infected humans. In this study, we establish that HIV type 1 (HIV-1) bearing a reporter gene inserted into the viral vpr gene is highly aggressive in depleting human myeloid and erythroid colony-forming precursor activity in vivo. Human CD34(+) progenitor cells can be efficiently recovered from infected implants yet do not express the viral reporter gene, despite severe functional defects. Our results indicate that HIV-1 infection alone leads to hematopoietic inhibition in vivo; however, this effect is due to indirect mechanisms rather than to direct infection of CD34(+) cells in vivo.  相似文献   

18.
Homozygosity for the naturally occurring Delta32 deletion in the HIV co-receptor CCR5 confers resistance to HIV-1 infection. We generated an HIV-resistant genotype de novo using engineered zinc-finger nucleases (ZFNs) to disrupt endogenous CCR5. Transient expression of CCR5 ZFNs permanently and specifically disrupted approximately 50% of CCR5 alleles in a pool of primary human CD4(+) T cells. Genetic disruption of CCR5 provided robust, stable and heritable protection against HIV-1 infection in vitro and in vivo in a NOG model of HIV infection. HIV-1-infected mice engrafted with ZFN-modified CD4(+) T cells had lower viral loads and higher CD4(+) T-cell counts than mice engrafted with wild-type CD4(+) T cells, consistent with the potential to reconstitute immune function in individuals with HIV/AIDS by maintenance of an HIV-resistant CD4(+) T-cell population. Thus adoptive transfer of ex vivo expanded CCR5 ZFN-modified autologous CD4(+) T cells in HIV patients is an attractive approach for the treatment of HIV-1 infection.  相似文献   

19.
HIV particles are detected extracellularly in lymphoid tissues, a major reservoir of the virus. We previously reported that a polymerized form of fibronectin (FN), superfibronectin (sFN), as well as a fragment of FN, III1-C, enhanced infection of primary CD4(+) T cells by HIV-1IIIB. We now show that sFN enhances infection of primary CD4(+) T cells by both R5 and X4 strains of HIV-1. Using HIV pseudotyped with different envelope glycoproteins (gp120) and HOS cells transfected with various chemokine receptors alone or in combination with the CD4 molecule, we show that sFN-mediated enhancement requires the CD4 receptor and does not alter the specificity of gp120 for different chemokine receptors. Because the III1-C fragment also resulted in enhancement, we asked whether proteolysis of FN generated fragments capable of enhancing HIV infection. We found that progressive proteolysis of FN by chymotrypsin correlates with an enhancement of HIV infection in both primary CD4(+) T cells and the IG5 reporter cell line. Furthermore, incubation of HIV with sFN significantly prolonged infectivity at 37 degrees C compared with dimeric FN or BSA. In conclusion, these results indicate that polymerized (matrix) or degraded (inflammation-associated), but not dimeric (plasma), FN are capable of enhancing infection by HIV-1, independent of the coreceptor specificity of the strains. Moreover, virions bound to matrix FN maintain infectivity for longer periods of time than do virions in suspension. This study suggests that matrix proteins and their conformational status may play a role in the pathogenesis of HIV.  相似文献   

20.
Immature plasmacytoid dendritic cells are the principal alpha interferon-producing cells (IPC), responsible for primary antiviral immunity. IPC express surface molecules CD4, CCR5, and CXCR4, which are known coreceptors required for human immunodeficiency virus (HIV) infection. Here we show that IPC are susceptible to and replicate HIV type 1 (HIV-1). Importantly, viral replication is triggered upon activation of IPC with CD40 ligand, a signal physiologically delivered by CD4 T cells. Immunohistochemical staining of tonsil from HIV-infected individuals reveals HIV p24(+) IPC, consistent with in vivo infection of these cells. IPC exposed in vitro to HIV produce alpha interferon, which partially inhibits viral replication. Nevertheless, IPC efficiently transmit HIV-1 to CD4 T-cells, and such transmission is also augmented by CD40 ligand activation. IPC produce RANTES/CCL5 and MIP-1alpha/CCL3 when exposed to HIV in vitro. IPC also induce na?ve CD4 T cells to proliferate and would therefore preferentially infect these cells. These results indicate that IPC may play an important role in the dissemination of HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号