首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background  

SARS coronavirus (SARS-CoV) was identified as the etiological agent of SARS, and extensive investigations indicated that it originated from an animal source (probably bats) and was recently introduced into the human population via wildlife animals from wet markets in southern China. Previous studies revealed that the spike (S) protein of SARS had experienced adaptive evolution, but whether other functional proteins of SARS have undergone adaptive evolution is not known.  相似文献   

2.

Background

Severe acute respiratory syndrome (SARS) is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV), whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2) is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41) differs in length, and has no sequence homology with S2.

Results

Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1) an N-terminal leucine/isoleucine zipper-like sequence, and (2) a C-terminal heptad repeat located upstream of (3) an aromatic residue-rich region juxtaposed to the (4) transmembrane segment.

Conclusions

This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.  相似文献   

3.

Background

Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated. Evaluations of an inactivated whole virus vaccine in ferrets and nonhuman primates and a virus-like-particle vaccine in mice induced protection against infection but challenged animals exhibited an immunopathologic-type lung disease.

Design

Four candidate vaccines for humans with or without alum adjuvant were evaluated in a mouse model of SARS, a VLP vaccine, the vaccine given to ferrets and NHP, another whole virus vaccine and an rDNA-produced S protein. Balb/c or C57BL/6 mice were vaccinated IM on day 0 and 28 and sacrificed for serum antibody measurements or challenged with live virus on day 56. On day 58, challenged mice were sacrificed and lungs obtained for virus and histopathology.

Results

All vaccines induced serum neutralizing antibody with increasing dosages and/or alum significantly increasing responses. Significant reductions of SARS-CoV two days after challenge was seen for all vaccines and prior live SARS-CoV. All mice exhibited histopathologic changes in lungs two days after challenge including all animals vaccinated (Balb/C and C57BL/6) or given live virus, influenza vaccine, or PBS suggesting infection occurred in all. Histopathology seen in animals given one of the SARS-CoV vaccines was uniformly a Th2-type immunopathology with prominent eosinophil infiltration, confirmed with special eosinophil stains. The pathologic changes seen in all control groups lacked the eosinophil prominence.

Conclusions

These SARS-CoV vaccines all induced antibody and protection against infection with SARS-CoV. However, challenge of mice given any of the vaccines led to occurrence of Th2-type immunopathology suggesting hypersensitivity to SARS-CoV components was induced. Caution in proceeding to application of a SARS-CoV vaccine in humans is indicated.  相似文献   

4.

Background

Epidemiological investigations of infectious disease are mainly dependent on indirect contact information and only occasionally assisted by characterization of pathogen sequence variation from clinical isolates. Direct sequence analysis of the pathogen, particularly at a population level, is generally thought to be too cumbersome, technically difficult, and expensive. We present here a novel application of mass spectrometry (MS)–based technology in characterizing viral sequence variations that overcomes these problems, and we apply it retrospectively to the severe acute respiratory syndrome (SARS) outbreak in Singapore.

Methods and Findings

The success rate of the MS-based analysis for detecting SARS coronavirus (SARS-CoV) sequence variations was determined to be 95% with 75 copies of viral RNA per reaction, which is sufficient to directly analyze both clinical and cultured samples. Analysis of 13 SARS-CoV isolates from the different stages of the Singapore outbreak identified nine sequence variations that could define the molecular relationship between them and pointed to a new, previously unidentified, primary route of introduction of SARS-CoV into the Singapore population. Our direct determination of viral sequence variation from a clinical sample also clarified an unresolved epidemiological link regarding the acquisition of SARS in a German patient. We were also able to detect heterogeneous viral sequences in primary lung tissues, suggesting a possible coevolution of quasispecies of virus within a single host.

Conclusion

This study has further demonstrated the importance of improving clinical and epidemiological studies of pathogen transmission through the use of genetic analysis and has revealed the MS-based analysis to be a sensitive and accurate method for characterizing SARS-CoV genetic variations in clinical samples. We suggest that this approach should be used routinely during outbreaks of a wide variety of agents, in order to allow the most effective control.  相似文献   

5.
6.
DNA vaccine of SARS-Cov S gene induces antibody response in mice   总被引:9,自引:0,他引:9  
The spike (S) protein, a main surface antigen of SARS-coronavirus (SARS-CoV), is one of themost important antigen candidates for vaccine design. In the present study, three fragments of the truncated S protein were expressed in E. coli, and analyzed with pooled sera of convalescence phase of SARS patients. The full length S gene DNA vaccine was constructed and used to immunize BALB/c mice. The mouse serum IgG antibody against SARS-CoV was measured by ELISA with E. coli expressed truncated S protein or SARS-CoV lysate as diagnostic antigen. The results showed that all the three fragments of S protein expressed by E. coli was able to react with sera of SARS patients and the S gene DNA candidate vaccine could induce the production of specific IgG antibody against SARS-CoV efficiently in mice with seroconversion ratio of 75% after 3 times of immunization. These findings lay some foundations for further understanding the immunology of SARS-CoV and developing SARS vaccines.  相似文献   

7.
Severe acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS-CoV-2), which causes the coronavirus disease 2019, encodes several proteins whose roles are poorly understood. We tested their ability either to directly form plasma membrane ion channels or to change functions of two mammalian plasma membrane ion channels, the epithelial sodium channel (ENaC) and the α3β4 nicotinic acetylcholine receptor. In mRNA-injected Xenopus oocytes, none of nine SARS-CoV-2 proteins or two SARS-CoV-1 proteins produced conductances, nor did co-injection of several combinations. Immunoblots for ORF8, spike (S), and envelope (E) proteins revealed that the proteins are expressed at appropriate molecular weights. In experiments on coexpression with ENaC, three tested SARS proteins (SARS-CoV-1 E, SARS-CoV-2 E, and SARS-CoV-2 S) markedly decrease ENaC currents. SARS-CoV-1 S protein decreases ENaC currents modestly. Coexpressing the E proteins but not the S proteins with α3β4 nicotinic acetylcholine receptors significantly reduces acetylcholine-induced currents. ENaC inhibition does not occur if the SARS-CoV protein mRNAs are injected 24 h after the ENaC mRNAs, suggesting that SARS-CoV proteins affect early step(s) in functional expression of channel proteins. Consistent with the hypothesis that the SARS-CoV-2 S protein-induced ENaC inhibition involves competition for available protease, mutating the furin cleavage site in SARS-CoV-2 S protein partially relieves inhibition of ENaC currents. Extending previous suggestions that SARS proteins affect ENaC currents via protein kinase C (PKC) activation, PKC activation via phorbol 12-myristate 13-acetate decreases ENaC and α3β4 activity. Phorbol 12-myristate 13-acetate application reduced membrane capacitance ~5%, presumably via increased endocytosis, but this decrease is much smaller than the SARS proteins’ effects on conductances. Also, incubating oocytes in Gö-6976, a PKCα and PKCβ inhibitor, did not alter E or S protein-induced channel inhibition. We conclude that SARS-CoV-1 and SARS-CoV-2 proteins alter the function of human plasma membrane channels, via incompletely understood mechanisms. These interactions may play a role in the coronavirus 2019 pathophysiology.  相似文献   

8.

Background

The outbreak of severe acute respiratory syndrome (SARS) caused a severe global epidemic in 2003 which led to hundreds of deaths and many thousands of hospitalizations. The virus causing SARS was identified as a novel coronavirus (SARS-CoV) and multiple genomic sequences have been revealed since mid-April, 2003. After a quiet summer and fall in 2003, the newly emerged SARS cases in Asia, particularly the latest cases in China, are reinforcing a wide-spread belief that the SARS epidemic would strike back. With the understanding that SARS-CoV might be with humans for years to come, knowledge of the evolutionary mechanism of the SARS-CoV, including its mutation rate and emergence time, is fundamental to battle this deadly pathogen. To date, the speed at which the deadly virus evolved in nature and the elapsed time before it was transmitted to humans remains poorly understood.

Results

Sixteen complete genomic sequences with available clinical histories during the SARS outbreak were analyzed. After careful examination of multiple-sequence alignment, 114 single nucleotide variations were identified. To minimize the effects of sequencing errors and additional mutations during the cell culture, three strategies were applied to estimate the mutation rate by 1) using the closely related sequences as background controls; 2) adjusting the divergence time for cell culture; or 3) using the common variants only. The mutation rate in the SARS-CoV genome was estimated to be 0.80 – 2.38 × 10-3 nucleotide substitution per site per year which is in the same order of magnitude as other RNA viruses. The non-synonymous and synonymous substitution rates were estimated to be 1.16 – 3.30 × 10-3 and 1.67 – 4.67 × 10-3 per site per year, respectively. The most recent common ancestor of the 16 sequences was inferred to be present as early as the spring of 2002.

Conclusions

The estimated mutation rates in the SARS-CoV using multiple strategies were not unusual among coronaviruses and moderate compared to those in other RNA viruses. All estimates of mutation rates led to the inference that the SARS-CoV could have been with humans in the spring of 2002 without causing a severe epidemic.
  相似文献   

9.
Severe acute respiratory syndrome (SARS) is a highly contagious zoonotic disease caused by SARS coronavirus (SARS-CoV). Since its outbreak in Guangdong Province of China in 2002, SARS has caused 8096 infections and 774 deaths by December 31st, 2003. Although there have been no more SARS cases reported in human populations since 2004, the recent emergence of a novel coronavirus disease (COVID-19) indicates the potential of the recurrence of SARS and other coronavirus disease among humans. Thus, developing a rapid response SARS vaccine to provide protection for human populations is still needed. Spike (S) protein of SARS-CoV can induce neutralizing antibodies, which is a pivotal immunogenic antigen for vaccine development. Here we constructed a recombinant chimeric vesicular stomatitis virus (VSV) VSVΔG-SARS, in which the glycoprotein (G) gene is replaced with the SARS-CoV S gene. VSVΔG-SARS maintains the bullet-like shape of the native VSV, with the heterogeneous S protein incorporated into its surface instead of G protein. The results of safety trials revealed that VSVΔG-SARS is safe and effective in mice at a dose of 1×106 TCID50. More importantly, only a single-dose immunization of 2×107 TCID50 can provide high-level neutralizing antibodies and robust T cell responses to non-human primate animal models. Thus, our data indicate that VSVΔG-SARS can be used as a rapid response vaccine candidate. Our study on the recombinant VSV-vectored SARS-CoV vaccines can accumulate experience and provide a foundation for the new coronavirus disease in the future.  相似文献   

10.
The spike (S) protein of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is not only responsible for receptor binding and virus fusion, but also a major Ag among the SARS-CoV proteins that induces protective Ab responses. In this study, we showed that the S protein of SARS-CoV is highly immunogenic during infection and immunizations, and contains five linear immunodominant sites (sites I to V) as determined by Pepscan analysis with a set of synthetic peptides overlapping the entire S protein sequence against the convalescent sera from SARS patients and antisera from small animals immunized with inactivated SARS-CoV. Site IV located in the middle region of the S protein (residues 528-635) is a major immunodominant epitope. The synthetic peptide S(603-634), which overlaps the site IV sequence reacted with all the convalescent sera from 42 SARS patient, but none of the 30 serum samples from healthy blood donors, suggesting its potential application as an Ag for developing SARS diagnostics. This study also provides information useful for designing SARS vaccines and understanding the SARS pathogenesis.  相似文献   

11.
Vasil'ev S  Shen JR  Kamiya N  Bruce D 《FEBS letters》2004,561(1-3):111-116
The open reading frame 3 of the severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes a predicted protein 3a, consisting of 274 amino acids, that lacks any significant similarities to any known protein. We generated specific antibodies against SARS protein 3a by using a synthetic peptide (P2) corresponding to amino acids 261-274 of the putative protein. Anti-P2 antibodies and the sera from SARS patients could specifically detect the recombinant SARS protein 3a expressed in Escherichia coli and in Vero E6 cells. Expression of SARS protein 3a was detected at 8-12 h after infection and reached a higher level after approximately 24 h in SARS-CoV-infected Vero E6 cells. Protein 3a was also detected in the alveolar lining pneumocytes and some intra-alveolar cells of a SARS-CoV-infected patient's lung specimen. Recombinant protein 3a expressed in Vero E6 cells and protein 3a in the SARS-CoV-infected cells was distributed over the cytoplasm in a fine punctate pattern with partly concentrated staining in the Golgi apparatus. Our study demonstrates that SARS-CoV indeed expresses a novel protein 3a, which is present only in SARS-CoV and not in other known CoVs.  相似文献   

12.
Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro.1,2 Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TOR2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.Key words: SARS coronavirus, monoclonal antibody, neutralizing, epitope, immunochemistry  相似文献   

13.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a novel coronavirus and causing worldwide outbreaks. SARS coronavirus (SARS-CoV) is an enveloped RNA virus, which contains several structural proteins. Among these proteins, spike (S) protein is responsible for binding to specific cellular receptors and is a major antigenic determinant, which induces neutralizing antibody. In order to analyze the antigenicity and receptor-binding ability of SARS-CoV S protein, we expressed the S protein in Escherichia coli using a pET expression vector. After the isopropyl-beta-D-thiogalactoside induction, S protein was expressed in the soluble form and purified by nickel-affinity chromatography to homogeneity. The amount of S protein recovered was 0.2-0.3mg/100ml bacterial culture. The S protein was recognized by sera from SARS patients by ELISA and Western blot, which indicated that recombinant S protein retained its antigenicity. By biotinylated ELISA and Western blot using biotin-labeled S protein as the probe, we identified 130-kDa and 140-kDa proteins in Vero cells that might be the cellular receptors responsible for SARS-CoV infection. Taken together, these results suggested that recombinant S protein exhibited the antigenicity and receptor-binding ability, and it could be a good candidate for further developing SARS vaccine and anti-SARS therapy.  相似文献   

14.

Background

Entry of enveloped viruses into host cells requires the activation of viral envelope glycoproteins through cleavage by either intracellular or extracellular proteases. In order to gain insight into the molecular basis of protease cleavage and its impact on the efficiency of viral entry, we investigated the susceptibility of a recombinant native full-length S-protein trimer (triSpike) of the severe acute respiratory syndrome coronavirus (SARS-CoV) to cleavage by various airway proteases.

Methodology/Principal Findings

Purified triSpike proteins were readily cleaved in vitro by three different airway proteases: trypsin, plasmin and TMPRSS11a. High Performance Liquid Chromatography (HPLC) and amino acid sequencing analyses identified two arginine residues (R667 and R797) as potential protease cleavage site(s). The effect of protease-dependent enhancement of SARS-CoV infection was demonstrated with ACE2 expressing human bronchial epithelial cells 16HBE. Airway proteases regulate the infectivity of SARS-CoV in a fashion dependent on previous receptor binding. The role of arginine residues was further shown with mutant constructs (R667A, R797A or R797AR667A). Mutation of R667 or R797 did not affect the expression of S-protein but resulted in a differential efficacy of pseudotyping into SARS-CoVpp. The R667A SARS-CoVpp mutant exhibited a lack of virus entry enhancement following protease treatment.

Conclusions/Significance

These results suggest that SARS S-protein is susceptible to airway protease cleavage and, furthermore, that protease mediated enhancement of virus entry depends on specific conformation of SARS S-protein upon ACE2 binding. These data have direct implications for the cell entry mechanism of SARS-CoV along the respiratory system and, furthermore expand the possibility of identifying potential therapeutic agents against SARS-CoV.  相似文献   

15.
The nucleocapsid (N) protein of the severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) is an important antigen for the early diagnosis of SARS and the development of vaccines. It was expressed in Escherichia coli as a fusion with human glutathione S-transferase (hGST) and was confirmed by Western blotting analysis. This recombinant N protein (hGST-N) was purified and used to measure the SARS-CoV N-specific antibody in the sera of eight SARS patients by enzyme-linked immunosorbent assay. Specific antibody response to this purified recombinant N protein was 100% positive in the SARS patients sera, while none of the control sera from 30 healthy people gave a positive reaction in the same assay. The SARS-CoV N protein was also expressed in Lactococcus lactis in the cytoplasm or secreted into the medium. The N-producing strain MG1363/pSECN and the purified hGST-N protein were respectively administered to mice, either orally or intranasally. Results indicated that orally delivered MG1363/pSECN induced significant N-specific IgG in the sera. In conclusion, our work provides a novel strategy to produce the SARS-CoV N protein for serodiagnosis and for L. lactis-based mucosal vaccines.  相似文献   

16.
Severe acute respiratory syndrome (SARS) was discovered during a recent global outbreak of atypical pneumonia. A number of immunologic and molecular studies of the clinical samples led to the conclusion that a novel coronavirus (SARS-CoV) was associated with the outbreak. Later, a SARS resequencing GeneChip was developed by Affymetrix to characterize the complete genome of SARS-CoV on a single GeneChip. The present study was carried out to evaluate the performance of SARS resequencing GeneChips. Two human SARS-CoV strains (CDC#200301157 and Urbani) were resequenced by the SARS GeneChips. Five overlapping PCR amplicons were generated for each strain and hybridized with these GeneChips. The successfully hybridized GeneChips generated nucleotide sequences of nearly complete genomes for the two SARS-CoV strains with an average call rate of 94.6%. Multiple alignments of nucleotide sequences obtained from SARS GeneChips and conventional sequencing revealed full concordance. Furthermore, the GeneChip-based analysis revealed no additional polymorphic sites. The results of this study suggest that GeneChip-based genome characterization is fast and reproducible. Thus, SARS resequencing GeneChips may be employed as an alternate tool to obtain genome sequences of SARS-CoV strains pathogenic for humans in order to further understand the transmission dynamics of these viruses.  相似文献   

17.
Severe acute respiratory syndrome (SARS), a new disease with symptoms similar to those of atypical pneumonia, raised a global alert in March 2003. Because of its relatively high transmissibility and mortality upon infection, probable SARS patients were quarantined and treated with special and intensive care. Therefore, instant and accurate laboratory confirmation of SARS-associated coronavirus (SARS-CoV) infection has become a worldwide interest. For this need, we purified recombinant proteins including the nucleocapsid (N), envelope (E), membrane (M), and truncated forms of the spike protein (S1–S7) of SARS-CoV inEscherichia coli. The six proteins N, E, M, S2, S5, and S6 were used for Western blotting (WB) to detect various immunoglobulin classes in 90 serum samples from 54 probable SARS patients. The results indicated that N was recognized in most of the sera. In some cases, S6 could be recognized as early as 2 or 3 days after illness onset, while S5 was recognized at a later stage. Furthermore, the result of recombinant-protein-based WB showed a 90% agreement with that of the whole-virus-based immunofluorescence assay. Combining WB with existing RT-PCR, the laboratory confirmation for SARS-CoV infection was greatly enhanced by 24.1%, from 48.1% (RT-PCR alone) to 72.2%. Finally, our results show that IgA antibodies against SARS-CoV can be detected within 1 week after illness onset in a few SARS patients.  相似文献   

18.
19.
A novel coronavirus, the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), was identified as the causative agent of SARS. The profile of specific antibodies to individual proteins of the virus is critical to the development of vaccine and diagnostic tools. In this study, 13 recombinant proteins associated with four structural proteins (S, E, M and N) and five putative uncharacterized proteins (3a, 3b, 6, 7a and 9b) of the SARS-CoV were prepared and used for screening and monitoring their specific IgG antibodies in SARS patient sera by protein microarray. Antibodies to proteins S, 3a, N and 9b were detected in the sera from convalescent-phase SARS patients, whereas those to proteins E, M, 3b, 6 and 7a were undetected. In the detectable specific antibodies, anti-S and anti-N were dominant and could persist in the sera of SARS patients until week 30. Among the rabbit antisera to recombinant proteins S3, N, 3a and 9b, only anti-S3 serum showed significant neutralizing activity to the SARS-CoV infection in Vero E6 cells. The results suggest (1) that anti-S and anti-N antibodies are diagnostic markers and in particular that S3 is immunogenic and therefore is a good candidate as a subunit vaccine antigen; and (2) that, from a virus structure viewpoint, the presence in some human sera of antibodies reacting with two recombinant polypeptides, 3a and 9b, supports the hypothesis that they are synthesized during the virus cycle.  相似文献   

20.
目的:追踪检测SARS冠状病毒(SARS-CoV)抗体在严重急性呼吸综合征(SARS)患者血清中的产生及其转归规律,为SARS诊断及防治提供依据。方法:对41例临床诊断SARS患者的血清进行了连续3年的检测,分别应用间接免疫荧光(IFA)检测患者血清特异性IgG抗体平均滴度,应用双抗原夹心ELISA法检测患者血清核衣壳蛋白(N蛋白)抗体的平均滴度,绘制消涨曲线,得出消涨规律。结果:应用IFA检测患者血清特异性IgG抗体与应用双抗原夹心ELISA法检测N蛋白抗体所得到的消涨规律不同,前者测得康复者血清IgG抗体滴度维持在较低水平,但后者检测35例康复者血清N蛋白抗体仍维持在较高水平。结论:SARS-CoV的N蛋白是免疫原性较强的抗原,感染3年后仍存在高滴度抗体;抗原夹心ELISA检测SARS-CoV N蛋白抗体的灵敏度较IFA方法高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号