首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Background  

Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (π 1) of the true differentially expression genes in the array. Unfortunately, the probability of detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for correlation and effect size heterogeneity among genes.  相似文献   

2.

Background  

In cancer studies, it is common that multiple microarray experiments are conducted to measure the same clinical outcome and expressions of the same set of genes. An important goal of such experiments is to identify a subset of genes that can potentially serve as predictive markers for cancer development and progression. Analyses of individual experiments may lead to unreliable gene selection results because of the small sample sizes. Meta analysis can be used to pool multiple experiments, increase statistical power, and achieve more reliable gene selection. The meta analysis of cancer microarray data is challenging because of the high dimensionality of gene expressions and the differences in experimental settings amongst different experiments.  相似文献   

3.

Background  

There is an urgent need for new prognostic markers of breast cancer metastases to ensure that newly diagnosed patients receive appropriate therapy. Recent studies have demonstrated the potential value of gene expression signatures in assessing the risk of developing distant metastases. However, due to the small sample sizes of individual studies, the overlap among signatures is almost zero and their predictive power is often limited. Integrating microarray data from multiple studies in order to increase sample size is therefore a promising approach to the development of more robust prognostic tests.  相似文献   

4.

Background  

With the explosion in data generated using microarray technology by different investigators working on similar experiments, it is of interest to combine results across multiple studies.  相似文献   

5.
Non-biological experimental variation or "batch effects" are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes ( > 25) to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.  相似文献   

6.

Background  

The small sample sizes often used for microarray experiments result in poor estimates of variance if each gene is considered independently. Yet accurately estimating variability of gene expression measurements in microarray experiments is essential for correctly identifying differentially expressed genes. Several recently developed methods for testing differential expression of genes utilize hierarchical Bayesian models to "pool" information from multiple genes. We have developed a statistical testing procedure that further improves upon current methods by incorporating the well-documented relationship between the absolute gene expression level and the variance of gene expression measurements into the general empirical Bayes framework.  相似文献   

7.

Background

When conducting multiple hypothesis tests, it is important to control the number of false positives, or the False Discovery Rate (FDR). However, there is a tradeoff between controlling FDR and maximizing power. Several methods have been proposed, such as the q-value method, to estimate the proportion of true null hypothesis among the tested hypotheses, and use this estimation in the control of FDR. These methods usually depend on the assumption that the test statistics are independent (or only weakly correlated). However, many types of data, for example microarray data, often contain large scale correlation structures. Our objective was to develop methods to control the FDR while maintaining a greater level of power in highly correlated datasets by improving the estimation of the proportion of null hypotheses.

Results

We showed that when strong correlation exists among the data, which is common in microarray datasets, the estimation of the proportion of null hypotheses could be highly variable resulting in a high level of variation in the FDR. Therefore, we developed a re-sampling strategy to reduce the variation by breaking the correlations between gene expression values, then using a conservative strategy of selecting the upper quartile of the re-sampling estimations to obtain a strong control of FDR.

Conclusion

With simulation studies and perturbations on actual microarray datasets, our method, compared to competing methods such as q-value, generated slightly biased estimates on the proportion of null hypotheses but with lower mean square errors. When selecting genes with controlling the same FDR level, our methods have on average a significantly lower false discovery rate in exchange for a minor reduction in the power.  相似文献   

8.

Background  

Determining a suitable sample size is an important step in the planning of microarray experiments. Increasing the number of arrays gives more statistical power, but adds to the total cost of the experiment. Several approaches for sample size determination have been developed for expression array studies, but so far none has been proposed for array comparative genomic hybridization (aCGH).  相似文献   

9.

Background  

Much of the public access cancer microarray data is asymmetric, belonging to datasets containing no samples from normal tissue. Asymmetric data cannot be used in standard meta-analysis approaches (such as the inverse variance method) to obtain large sample sizes for statistical power enrichment. Noting that plenty of normal tissue microarray samples exist in studies not involving cancer, we investigated the viability and accuracy of an integrated microarray analysis approach based on significance analysis of microarrays (merged SAM) using a collection of data from separate diseased and normal samples.  相似文献   

10.

Background  

Gene sets are widely used to interpret genome-scale data. Analysis techniques that make better use of the correlation structure of microarray data while addressing practical "n<p" concerns could provide a real increase in power. However correlation structure is hard to estimate with typical genomics sample sizes. In this paper we present an extension of a classical multivariate procedure that confronts this challenge by the use of a regularized covariance matrix.  相似文献   

11.

Background  

Microarray experiments are often performed with a small number of biological replicates, resulting in low statistical power for detecting differentially expressed genes and concomitant high false positive rates. While increasing sample size can increase statistical power and decrease error rates, with too many samples, valuable resources are not used efficiently. The issue of how many replicates are required in a typical experimental system needs to be addressed. Of particular interest is the difference in required sample sizes for similar experiments in inbred vs. outbred populations (e.g. mouse and rat vs. human).  相似文献   

12.

Background  

Statistical methods to tentatively identify differentially expressed genes in microarray studies typically assume larger sample sizes than are practical or even possible in some settings.  相似文献   

13.
Matsui S  Noma H 《Biometrics》2011,67(4):1225-1235
Summary In microarray screening for differentially expressed genes using multiple testing, assessment of power or sample size is of particular importance to ensure that few relevant genes are removed from further consideration prematurely. In this assessment, adequate estimation of the effect sizes of differentially expressed genes is crucial because of its substantial impact on power and sample‐size estimates. However, conventional methods using top genes with largest observed effect sizes would be subject to overestimation due to random variation. In this article, we propose a simple estimation method based on hierarchical mixture models with a nonparametric prior distribution to accommodate random variation and possible large diversity of effect sizes across differential genes, separated from nuisance, nondifferential genes. Based on empirical Bayes estimates of effect sizes, the power and false discovery rate (FDR) can be estimated to monitor them simultaneously in gene screening. We also propose a power index that concerns selection of top genes with largest effect sizes, called partial power. This new power index could provide a practical compromise for the difficulty in achieving high levels of usual overall power as confronted in many microarray experiments. Applications to two real datasets from cancer clinical studies are provided.  相似文献   

14.

Background  

Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005) developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course) and alternative (time-course) hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation.  相似文献   

15.

Background  

Many different statistical methods have been developed to deal with two group comparison microarray experiments. Most often, a substantial number of genes may be selected or not, depending on which method was actually used. Practical guidance on the application of these methods is therefore required. We developed a procedure based on bootstrap and a criterion to allow viewing and quantifying differences between method-dependent selections. We applied this procedure on three datasets that cover a range of possible sample sizes to compare three well known methods, namely: t-test, LPE and SAM.  相似文献   

16.

Background  

The evaluation of statistical significance has become a critical process in identifying differentially expressed genes in microarray studies. Classical p-value adjustment methods for multiple comparisons such as family-wise error rate (FWER) have been found to be too conservative in analyzing large-screening microarray data, and the False Discovery Rate (FDR), the expected proportion of false positives among all positives, has been recently suggested as an alternative for controlling false positives. Several statistical approaches have been used to estimate and control FDR, but these may not provide reliable FDR estimation when applied to microarray data sets with a small number of replicates.  相似文献   

17.

Background  

It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages.  相似文献   

18.

Background  

In microarray gene expression profiling experiments, differentially expressed genes (DEGs) are detected from among tens of thousands of genes on an array using statistical tests. It is important to control the number of false positives or errors that are present in the resultant DEG list. To date, more than 20 different multiple test methods have been reported that compute overall Type I error rates in microarray experiments. However, these methods share the following dilemma: they have low power in cases where only a small number of DEGs exist among a large number of total genes on the array.  相似文献   

19.

Background

Microarray technology provides an efficient means for globally exploring physiological processes governed by the coordinated expression of multiple genes. However, identification of genes differentially expressed in microarray experiments is challenging because of their potentially high type I error rate. Methods for large-scale statistical analyses have been developed but most of them are applicable to two-sample or two-condition data.

Results

We developed a large-scale multiple-group F-test based method, named ranking analysis of F-statistics (RAF), which is an extension of ranking analysis of microarray data (RAM) for two-sample t-test. In this method, we proposed a novel random splitting approach to generate the null distribution instead of using permutation, which may not be appropriate for microarray data. We also implemented a two-simulation strategy to estimate the false discovery rate. Simulation results suggested that it has higher efficiency in finding differentially expressed genes among multiple classes at a lower false discovery rate than some commonly used methods. By applying our method to the experimental data, we found 107 genes having significantly differential expressions among 4 treatments at <0.7% FDR, of which 31 belong to the expressed sequence tags (ESTs), 76 are unique genes who have known functions in the brain or central nervous system and belong to six major functional groups.

Conclusion

Our method is suitable to identify differentially expressed genes among multiple groups, in particular, when sample size is small.  相似文献   

20.

Background  

A common feature of microarray experiments is the occurence of missing gene expression data. These missing values occur for a variety of reasons, in particular, because of the filtering of poor quality spots and the removal of undefined values when a logarithmic transformation is applied to negative background-corrected intensities. The efficiency and power of an analysis performed can be substantially reduced by having an incomplete matrix of gene intensities. Additionally, most statistical methods require a complete intensity matrix. Furthermore, biases may be introduced into analyses through missing information on some genes. Thus methods for appropriately replacing (imputing) missing data and/or weighting poor quality spots are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号