首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
The genetic and molecular mechanisms that control the development of capillary blood vessels during follicular development are beginning to be elucidated. Ovarian follicles contain and produce angiogenic factors that may act alone or in concert to regulate thecal angiogenesis. These factors are ultimately controlled by endocrine, paracrine and autocrine regulation in the ovary. Our recent study indicated that vascular endothelial growth factor (VEGF) plays an important role in the thecal angiogenesis during follicular development. In this review, we focus on the vasculature and the expression of angiogenic factors during follicular development in a mammalian ovary.  相似文献   

2.
The regulation of preantral follicle growth in mammals is poorly understood. The availability of an adequate vascular supply to provide endocrine and paracrine signals may be important during the early states of follicle growth as well as the later states of follicle selection and dominance. The objective of the present study was to investigate whether vascular endothelial growth factor (VEGF) plays a role in preantral follicular development in the rat ovary. Immature (age, 21 days) Sprague-Dawley rats were injected with 500 ng of VEGF in saline or 50 microg of diethylstilbestrol (DES) in oil under the bursa of one ovary. The contralateral ovary was injected with a corresponding volume of vehicle. Rats were killed 48 h later, and the ovaries were removed and analyzed histologically. Intrabursal administration of VEGF significantly increased the number of primary and small secondary, but not of large secondary, preantral follicles in the ovary, similar to the effect of DES (P < 0.05). The VEGF stimulated preantral follicle growth in a time- and dose-dependent manner. Subcutaneous DES administration increased the number of primary and secondary follicles, and both s.c. and intrabursal estrogen administration stimulated VEGF protein expression in the rat ovary. These data indicate that VEGF stimulates preantral follicular development in the rat ovary, is regulated by estrogen, and may be one of the factors that participate in the regulation of early follicle growth in the rat.  相似文献   

3.
The regulation of early follicular growth and development involves a complex interaction of autocrine, paracrine, and endocrine signals. The ability of these factors to regulate follicle growth may depend in part on the extent of vascular delivery to and perfusion of the ovary. Vascular endothelial growth factor A (VEGFA) is a major regulator of vascular physiology in the ovary. VEGFA is produced in numerous ovarian compartments and likely plays a role in the regulation of all phases of follicular growth, from preantral through preovulatory. The aim of the present study was to further evaluate the role of VEGF in early follicle growth by neutralization of endogenous VEGF or VEGF receptors. Adult mice were injected systemically and prepubertal mice were injected directly under the ovarian bursa with antibodies designed to neutralize VEGF or block interaction with its receptors in the ovary. Both systemic and intrabursal injections of VEGF antibody significantly reduced the number of primordial follicles within 1-3 days after administration without affecting primary or secondary follicle numbers. Primordial follicle numbers were not different from control levels by 30 days after VEGFA antibody administration. Administration of antibodies to the kinase domain receptor (KDR), but not the FMS-like tyrosine receptor (FLT1), for VEGF also resulted in a significant decrease in primordial follicles. These data suggest that VEGF plays a vital role in the maintenance and growth of the primordial follicle pool.  相似文献   

4.
5.
In the female reproductive system, as in a few adult tissues, angiogenesis occurs as a normal process and is essential for normal tissue growth and development. In the ovary, new blood vessel formation facilitates oxygen, nutrients, and hormone substrate delivery, and also secures transfer of different hormones to targeted cells. Ovarian follicle and the corpus luteum (CL) have been shown to produce several angiogenic factors, however, vascular endothelial growth factor (VEGF) is thought to play a paramount role in the regulation of normal and abnormal angiogenesis in the ovary. Expression of VEGF in ovarian follicles depends on follicular size. Inhibition of VEGF expression results in decreased follicle angiogenesis and the lack of the development of mature antral follicles. The permeabilizing activity of VEGF is thought to be involved in follicle antrum formation and in the ovulatory process. In the CL, VEGF expression corresponds to different patterns of angiogenesis during its lifespan. In most the species, higher VEGF expression in the early luteal phase is essential for the development of a high-density capillary network in the CL. However, high VEGF expression may be still maintained in the mid-luteal phase to increase vascular permeability that results in enhancement of luteal function. During gestation, VEGF is thought to be important for the persistence of the CL function for a longer than in the nonfertile cycle period of time. Further elucidation of specific roles of VEGF in ovarian physiology may help to understand the phenomenon of luteal insufficiency and reveal novel strategies of ovarian angiogenesis manipulation to alleviate infertility or to control fertility.  相似文献   

6.
The vascular endothelial growth factor (VEGF) is a critical factor for development of the vascular system in physiological and pathological angiogenesis. This growth factor exists under at least three isoforms, VEGF120/121, VEGF164/165 and VEGF188/189 which are generated by alternative splicing. VEGF isoforms have different affinities for heparan sulphate as well as for VEGF receptors, and may play distinct roles in vascular development. The role of VEGF189 as an endothelial mitogen, however, remains controversial. VEGF189 is almost entirely bound to the cell surface or extracellular matrix, and is considered active after its cleavage and release from its extracellular binding site. In the present study, we demonstrate that VEGF189 induces endothelial cell proliferation and migration in vitro. The 30-60% increase observed with VEGF189 (10 ng/ml) in HUVEC proliferation was similar to that observed with VEGF165. However, the proliferative effect observed with VEGF189 appeared dependent on the origin of the endothelial cell, since the proliferation was clearly observed with HUVEC but not with BAEC or capillary endothelial cells from dermis (HMEC). The effect of VEGF189 on endothelial cell migration was also analyzed using the wound healing and the Boyden chamber assays. The migration effect was observed with BAEC which do not proliferate with VEGF189, suggesting that different mechanisms are involved in proliferation and migration. In addition, VEGF189 as well as VEGF165 induced a 2-fold increase of Flk-1/KDR expression in HUVEC, the receptor involved in proliferation and migration of endothelial cells. In the Matrigel plug assay in vivo, both VEGF189 and 165 (100 ng/ml) increased the infiltration of endothelial cells. These data suggest that VEGF189 induced endothelial cell migration and proliferation under certain circumstances.  相似文献   

7.
Ovarian steroids in endometrial angiogenesis   总被引:13,自引:0,他引:13  
Angiogenesis, the sprouting of new blood vessels from pre-existing ones, is fundamental for human endometrial development and differentiation, which are necessary for implantation. This vascular process is supposed to be mainly mediated by the vascular endothelial growth factor (VEGF), also named vascular permeability factor (VPF). We report here the expression and modulation of VEGF and its receptors, Flk-1/KDR and Flt-1, in the functionalis throughout the menstrual cycle. Using immunocytochemistry, VEGF is localized in glandular epithelial cells and in the surrounding stroma, as well as in capillaries and spiral arterioles. The localization of VEGF on the endothelium correlates with the presence of Flt-1 and Flk-1/KDR receptors on vascular structures, including capillary strands that have not yet formed a lumen and that have been previously described in tumors as angiogenic capillaries. The strongest immunoreactivity for both VEGF and Flk-1/KDR receptor on endothelial cells is detected in the proliferative and midsecretory phases. Enhanced expression of VEGF and its Flk-1 receptors on narrow capillary strands during the proliferative phase may account for the rapid capillary growth associated with endometrial regeneration from the residual basal layer following menstrual shedding of the functionalis. The vascular expression of Flt-1 is more important in the secretory than in the proliferative phase, associated with a high microvascular density and an increase in vascular permeability in the implantation period. Consistently with these in vivo observations, the treatment of isolated endometrial stromal cells with estradiol (E(2)), or E(2) + progesterone, significantly increased VEGF mRNA over the control value in a dose-dependent manner. These results demonstrate that the expression of VEGF and its receptors is cyclically modulated by ovarian steroids, and that this endothelial growth factor acts on the endothelium in a paracrine fashion to control endometrial angiogenesis and permeability.  相似文献   

8.
9.
From collagenase digests of human thyroid, endothelial cells were separated from follicular cells by their greater adherence to gelatin-coated plates. Endothelial cells were further purified using fluorescence-activated cell sorting, selecting for cells expressing factor VIII-related antigen. Isolated cells were negative for thyroglobulin and calcitonin when examined by immunostaining. The receptor for the angiopoietins, Tie-2, was expressed by the cells, and expression was increased by agents that elevate cAMP. Nitric oxide synthase (NOS) 3, the endothelial form of NOS, was expressed by the cells and similarly regulated. Cells responded strongly to the mitogen fibroblast growth factor (FGF)-2 in growth assays but only weakly to vascular endothelial growth factor (VEGF). VEGF was, however, able to stimulate nitric oxide release from the cells consistent with their endothelial origin. The FGF receptor (FGFR1) was full length (120 kDa) and immunolocalized to the cytosol and nucleus. Thyrotropin (TSH) did not regulate FGFR1, but its expression was increased by VEGF. Thrombospondin, a product of follicular cells, was a growth inhibitor, but neither TSH nor 3,5,3'-triiodothyronine had direct mitogenic effects. Thyroid follicular cell conditioned medium contained plasminogen activator activity and stimulated the growth of the endothelial cells, but when treated with plasminogen to produce the endothelial-specific inhibitor, angiostatin, growth was inhibited. Human thyroid endothelial cell cultures will be invaluable in determining the cross talk between endothelial and follicular cells during goitrogenesis.  相似文献   

10.
Angiogenesis is the process that drives blood vessel development in growing tissues in response to the local production of angiogenic factors. With the present research the authors have studied vascular endothelial growth factor (VEGF) production in ovarian follicles as a potential mechanism of ovarian activity regulation. Prepubertal gilts were treated with 1250 IU equine chorionic gonadotropin (eCG) followed 60 h later by 750 IU of human chorionic gonadotropin (hCG) in order to induce follicle growth and ovulation. Ovaries were collected at different times of the treatment and single follicles were isolated and classified according to their diameter as small (<4 mm), medium (4-5 mm), or large (>5 mm). VEGF levels were measured in follicular fluid by enzyme immunoassay, and VEGF mRNA content was evaluated in isolated theca and granulosa compartments. Equine chorionic gonadotropin stimulated a prompt follicular growth and induced a parallel evident rise in VEGF levels in follicular fluid of medium and large follicles. Analysis of VEGF mRNA levels confirmed the stimulatory effect of eCG, showing that it is confined to granulosa cells, whereas theca cells maintained their VEGF steady state mRNA. Administration of hCG 60 h after eCG caused a dramatic drop in follicular fluid VEGF that reached undetectable levels in 36 h. A parallel reduction in VEGF mRNA expression was recorded in granulosa cells. The stimulating effect of eCG was also confirmed by in vitro experiments, provided that follicles in toto were used, whereas isolated follicle cells did not respond to this hormonal stimulation. Consistent with the observation in vivo, granulosa cells in culture reacted to hCG with a clear block of VEGF production. These results demonstrate that while follicles of untreated animals produce stable and low levels of the angiogenic factor, VEGF markedly rose in medium and large follicles after eCG administration. The increasing levels, essentially attributable to granulosa cells, are likely to be involved in blood vessel development in the wall of growing follicles, and may play a local key role in gonadotropin-induced follicle development. When ovulation approaches, under the effect of hCG, the production of VEGF is switched off, probably creating the safest conditions for the rupture of the follicle wall while theca cells maintained unaltered angiogenic activity, which is probably required for corpus luteum development.  相似文献   

11.
Sağsöz H  Saruhan BG 《Theriogenology》2011,75(9):1720-1734
The present study was conducted to demonstrate of the immunohistochemical localization of vascular endothelial growth factor (VEGF) and its receptors (flt1/fms, flk1/KDR and flt4) as well as vascular endothelial growth inhibitor (VEGI) and to determine the correlation of VEGF and its receptors and VEGI with serum sex steroids (estrogen and progesterone) in the bovine uterus during the sexual cycle. The stage of the estrous cycle in 30 Holstein cattle was assessed based on the gross and histological appearance of the ovaries and uterus and on blood steroid hormone levels. Tissue samples obtained from the uterus were fixed in 10% formaldehyde for routine histological processing. During both follicular and luteal phases, positive cytoplasmic and membrane staining was achieved for VEGF and its receptors (flt1/fms, flk1/KDR and flt4) as well as VEGI in the luminal and glandular epithelial cells, the connective tissue and smooth muscle cells, and the vascular endothelial cells and smooth muscle cells in the uterus. The intensity, proportional and total scores determined for VEGF and its receptors (flt1/fms and flt4) as well as VEGI were greater in the luminal and glandular epithelial cells compared to the connective tissue and smooth muscle cells (P < 0.05). Furthermore, the number and intensity of the flk1/KDR positive cells were greater among the connective tissue cells compared to the luminal and glandular epithelial cells (P < 0.05). As a result, it was determined that the expression of VEGF and its receptors as well as VEGI in the bovine uterus during the follicular and luteal phases varied with different cell types. This suggests that depending on the stage of the sexual cycle, these factors may mediate the establishment of an appropriate environment for the nutritional supply and implantation of the embryo primarily due to the stimulation of angiogenesis but also through the increase in the secretory activity of the epithelial cells in the uterus. Furthermore, this indicates that ovarian steroid hormones play a significant role in regulating the expression of VEGF and its receptors as well as VEGI.  相似文献   

12.
The development of mature ovarian follicles is greatly dependent on healthy thecal angiogenesis. Recent experimental evidence showed that thyroxine (T4) treatment promoted ovarian follicle development in immature hypothyroid (rdw) rats. However, an involvement of thyroid hormone in ovarian follicular angiogenesis has not yet been demonstrated. By morphological and molecular approaches, the present studies demonstrated that antral follicles in untreated, T4- or equine chorionic gonadotropin (eCG)-treated rdw rats were mainly small and/or atretic, and presented a poorly developed thecal microvasculature with ultrastructural evidence of diffuse quiescent or degenerative thin capillaries. However, T4 together with eCG increased the number of large antral and mature follicles with numerous activated capillaries and ultra-structural evidence of rich and diffuse angiogenesis in the theca layer. While T4 alone significantly increased mRNA expression of vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNFalpha), it decreased that of fetal liver kinase compared with those in the untreated group. Combined treatment of T4 and eCG markedly increased mRNA abundance of not only VEGF and TNFalpha, but also basic fibroblast growth factor. These data suggest that T4 may promote ovarian follicular angiogenesis in rdw rats by up-regulating mRNA expression of major angiogenic factors.  相似文献   

13.
The practice of plastic surgery has always remained at the frontier of medical science. Over the past few decades, this frontier has been marked by significant developments in the field of gene therapy. Gene therapy serves to replace, supplement, or manipulate a patient's genetic makeup to restore function that has been lost or to correct function that is aberrant. Recent technology may allow surgeons to augment the processes of wound healing and angiogenesis by transfecting genes encoding desirable proteins, such as vascular endothelial factor (VEGF), into ischemic tissues. VEGF is a vital growth factor in the development of blood vessels. Although its mechanisms of action are numerous, its sole function seems to be the augmentation of angiogenesis. VEGF is active in growth and development, in wound healing, and in various pathologic conditions, such as psoriasis and rheumatoid arthritis. The role of VEGF in the field of plastic surgery is just beginning to be explored; it may someday prove to be very rewarding.  相似文献   

14.
Kim JH  Park SW  Yu YS  Kim KW  Kim JH 《Biochimie》2012,94(3):734-740
In ocular development, retinal physiological hypoxia in response to the retinal metabolic activity controls retinal vascular development, which is regulated by variable angiogenic factors. Herein, we demonstrated that hypoxia-induced IGF-II could contribute to retinal vascularization in ocular development. In the developing retina, IGF-II expression appears to be predominant on retinal vessels, which was chronologically increased and peaked during active retinal angiogenesis similar to VEGF expression. Under hypoxic condition, IGF-II as well as VEGF was significantly up-regulated in retinal vascular endothelial cells. In addition, IGF-II treatment could also increase VEGF expression in retinal vascular endothelial cells. The VEGF expression induced by IGF-II was mediated by ERK-1/2 activation. Moreover, IGF-II strongly promoted angiogenic processes of migration and tube formation of retinal microvascular endothelial cells. In conclusion, our results provided that hypoxia-induced IGF-II may regulate retinal vascular development not only directly by IGF-II-mediated angiogenic activity, but also indirectly by IGF-II-induced VEGF expression. Therefore, the potential contribution of IGF-II to pathological retinal angiogenesis should be furthermore explored for the development of novel treatments to vaso-proliferative retinopathies.  相似文献   

15.

Background  

Angiogenesis is a crucial process in follicular development and luteogenesis. The nerve growth factor (NGF) promotes angiogenesis in various tissues. An impaired production of this neurotrophin has been associated with delayed wound healing. A variety of ovarian functions are regulated by NGF, but its effects on ovarian angiogenesis remain unknown. The aim of this study was to elucidate if NGF modulates 1) the amount of follicular blood vessels and 2) ovarian expression of two angiogenic factors: vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGFbeta1), in the rat ovary.  相似文献   

16.
The vascular endothelial growth factor (VEGF) family encompasses four polypeptides that result from alternative splicing of mRNA. We have previously demonstrated differences in the secretion pattern of these polypeptides. Stable cell lines expressing VEGFs were established in human embryonic kidney CEN4 cells. VEGF121, the shortest form, was secreted and freely soluble in tissue culture medium. VEGF189 was secreted, but was almost entirely bound to the cell surface or extracellular matrix. VEGF165 displayed an intermediary behavior. Suramin induced the release of VEGF189, permitting its characterization as a more basic protein with higher affinity for heparin than VEGF165 or VEGF121, but with similar endothelial cell mitogenic activity. Heparin, heparan sulfate, and heparinase all induced the release of VEGF165 and VEGF189, suggesting heparin-containing proteoglycans as candidate VEGF-binding sites. Finally, VEGF165 and VEGF189 were released from their bound states by treatment with plasmin. The released 34-kDa dimeric species are active as endothelial cell mitogens and as vascular permeability agents. We conclude that the bioavailability of VEGF may be regulated at the genetic level by alternative splicing that determines whether VEGF will be soluble or incorporated into a biological reservoir and also through proteolysis following plasminogen activation.  相似文献   

17.

Background  

During the female reproductive cycle, follicular development and corpus luteum formation crucially depend on the fast generation of new blood vessels. The importance of granulosa cells and follicular fluid in controlling this angiogenesis is still not completely understood. Vascular endothelial growth factor (VEGF) produced by granulosa cells and secreted into the follicular fluid plays an essential role in this process. On the other hand, soluble VEGF receptor-1 (sFlt-1) produced by endothelial cells acts as a negative modulator for the bioavailability of VEGF. However, the regulation of sFlt-1 production remains to be determined.  相似文献   

18.
VEGF in biological control   总被引:4,自引:0,他引:4  
Vascular endothelial growth factor A (VEGF-A) belongs to a family of heparin binding growth factors that include VEGF-B, VEGF-C, VEGF-D, and placental-like growth factor (PLGF). First discovered for its ability to regulate vascular endothelial cell permeability, VEGF is a well-known angiogenic factor that is important for vascular development and maintenance in all mammalian organs. The development of molecular tools and pharmacological agents to selectively inhibit VEGF function and block angiogenesis and/or vascular permeability has led to great promise in the treatment of various cancers, macular degeneration, and wound healing. However, VEGF is also important in animals for the regulation of angiogenesis, stem cell and monocyte/macrophage recruitment, maintenance of kidney and lung barrier functions and neuroprotection. In addition to its role in regulating endothelial cell proliferation, migration, and cell survival, VEGF receptors are also located on many non-endothelial cells and act through autrocrine pathways to regulate cell survival and function. The following review will discuss the role of VEGF in physiological angiogenesis as well as its role in non-angiogenic processes that take place in adult organs.  相似文献   

19.
Pheochromocytomas are well-vascularized tumors, suggesting that a potent angiogenic factor may be involved in the mechanism of their formation. As vascular endothelial growth factor (VEGF) is a potent mitogen for vascular endothelial cells, here we have investigated the mRNA and protein expression of VEGF and the mRNA expression of its two receptors (Flt-1 and Flk-1/KDR) in pheochromocytomas tissue. An increase in VEGF mRNA (mainly isoforms VEGF(121) and VEGF(165)) and in VEGF protein expression were observed by semi-quantitative RT-PCR and Western blot, respectively, compared to normal adrenomedullary tissue. Flk-1/KDR, and Flt-1 levels of mRNA were also increased markedly in tumors and correlated with levels of VEGF mRNA. Therefore, we speculate that upregulation of VEGF expression and its receptors might be important in the pathogenesis of pheochromocytomas.  相似文献   

20.
Angiogenesis plays an important role in the development of the ovarian follicle and its subsequent transition into the corpus luteum. Accordingly, follicular fluid is a rich source of mitogenic and angiogenic factors such as basic fibroblast growth factor and vascular endothelial growth factor secreted by granulosa cells. In the present study, we show that follicular fluid deprived of basic fibroblast growth factor or vascular endothelial growth factor by means of thermal denaturation or antibody neutralization retains its capacity to stimulate endothelial proliferation and angiogenesis. Mass spectrometric analysis of chromatographic fractions stimulating endothelial growth obtained from follicular fluid revealed that the heat-stable mitogenic activity is identical with the subfraction alpha of high density lipoproteins purified from follicular fluid (FF-HDL). Further investigations demonstrated that sphingosine 1-phosphate (S1P), one of the lysophospholipids associated with HDL, accounts for the capacity of this lipoprotein to stimulate endothelial growth and the formation of new vessels. Activation of mitogen-activated protein kinase (p42/44(ERK1/2)), protein kinase C, and protein kinase Akt represent signaling pathways utilized by FF-HDL and S1P to induce endothelial proliferation and angiogenesis. We conclude that FF-HDL represents a novel mitogenic and angiogenic factor present in follicular fluid and that S1P is one of the FF-HDL lipid components accounting for this activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号