首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical stimulation of skeletal muscle flaps is used clinically in applications that require contraction of muscle and force generation at the recipient site, for example, to assist a failing myocardium (cardiomyoplasty) or to reestablish urinary or fecal continence as a neo-sphincter (dynamic graciloplasty). A major problem in these applications (muscle fatigue) results from the nonphysiologic manner in which most of the fibers within the muscle are recruited in a single burst-like contraction. To circumvent this problem, current protocols call for the muscle to be put through a rigorous training regimen to transform it from a fatigue-prone to a fatigue-resistant state. This process takes several weeks during which, aside from becoming fatigue-resistant, the muscle loses power and contraction speed. This study tested the feasibility of electrically stimulating a muscle flap in a more physiologic way; namely, by stimulating different anatomical parts of the muscle sequentially rather than the entire muscle all at once. Sequential segmental neuromuscular stimulation (SSNS) allows parts of the muscle to rest while other parts are contracting. In a paired designed study in dogs (n = 7), the effects of SSNS on muscle fatigability and muscle blood perfusion in gracilis muscles were compared with conventional stimulation: SSNS on one side and whole muscle stimulation on the other. In SSNS, electrodes were implanted in the muscles in such a way that four separate segments of each muscle could be stimulated separately. Then, each segment was stimulated so that part of the muscle was always contracted while part was always resting. This type of stimulation permitted sequential yet continuous force generation. Muscles in both groups maintained an equal amount of continuous force. In SSNS muscles, separate segments were stimulated so that the duty cycle for any one segment was 25, 50, 75, or 100 percent, thus varying the amount of work and rest that any segment experienced at any one time. With duty cycles of 25, 50, and 75 percent, SSNS produced significantly (p < 0.01) enhanced resistance to fatigue. In addition, muscle perfusion was significantly (p < 0.01) increased in these sequentially stimulated muscles compared with the controls receiving whole muscle stimulation. It was concluded that SSNS reduces muscle fatigue and enhances muscle blood flow during stimulation. These findings suggest that using SSNS in clinical myoplasty procedures could obviate the need for prolonged training protocols and minimize problems associated with muscle training.  相似文献   

2.
Physiological and biochemical responses of skeletal muscle fibres to enhanced neuromuscular activity under conditions of maximum activation can be studied experimentally by chronic low-frequency stimulation of fast muscles. Stimulation-induced changes in the expression pattern of the rabbit fast skeletal muscle proteome were evaluated by two-dimensional gel electrophoresis and compared to the altered isoform expression profile of established transformation markers such as the Ca2+-ATPase, calsequestrin and the myosin heavy chain. Sixteen muscle proteins exhibited a marked change in their expression level. This included albumin with a 4-fold increase in abundance. In contrast, glycolytic enzymes, such as enolase and aldolase, showed a decreased expression. Concomitant changes were observed with marker elements of the contractile apparatus. While the fast isoforms of troponin T and myosin light chain 2 were drastically down-regulated, their slow counterparts exhibited increased expression. Interestingly, mitochondrial creatine kinase expression increased while the cytosolic isoform of this key muscle enzyme decreased. The expression of the small heat shock protein HSP-B5/alphaB-crystallin and the oxygen carrier protein myoglobin were both increased 2-fold following stimulation. The observed changes indicate that the conversion into fatigue-resistant red fibres depends on: (i) the optimum utilization of free fatty acids via albumin transportation, (ii) a rearrangement of the creatine kinase isozyme pattern for enhanced mitochondrial activity, (iii) an increased availability of oxygen for aerobic metabolism via myoglobin transport, (iv) the conversion of the contractile apparatus to isoforms with slower twitch characteristics and (v) the up-regulation of chaperone-like proteins for stabilising myofibrillar components during the fast-to-slow transition process.  相似文献   

3.
Progressive sequential stimulation of a skeletal muscle using trains of 30 Hz impulses with increasing frequencies from 20/min. to 80/min. within 3 months, allowed us to obtain in goats a transformation of the fast twitch glycolytic muscular fibers into fatigue resistant slow twitch oxidative muscular fibers. The conditioned muscle can be used in the treatment of various myocardial lesions or to reinforce cardiac contractility in severe cardiac insufficiencies. The first clinical case successfully operated upon is reported.  相似文献   

4.
Dynamic skeletal muscle flaps are designed to perform a specific functional task through contraction and relaxation of their muscle fibers. The most commonly used dynamic skeletal flaps today are for cardiomyoplasty and anal or urinary myoplasty. Low-frequency chronic stimulation of these flaps enables them to use their intrinsic energy stores in a more efficient manner through aerobic metabolic pathways for increased endurance and improved work capacity. The purpose of this study was to (1) determine whether fiber type transformation from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers could be demonstrated in the authors' chronic canine stomal sphincter model where the rectus abdominis muscle was used to create a functional stomal sphincter, (2) assess whether there is any correlation between the degree of muscle fiber type transformation and the continence times, and (3) examine the long-term effects of the training regimens on the skeletal muscle fibers through histologic and volumetric analysis. Eight dynamic island-flap sphincters were created from a part of the rectus abdominis muscle in mongrel dogs by preserving the deep inferior epigastric vascular pedicle and the most caudal investing intercostal nerve. The muscular sphincters were wrapped around a blind loop of distal ileum and trained with pacing electrodes. Two different training protocols were used. In group A (n = 4), a preexisting anal dynamic graciloplasty training protocol was used. A revised protocol was used in group B (n = 4). Muscle biopsy specimens were obtained before and after training from the rectus abdominis muscle sphincter. Fiber type transformation was assessed using a monoclonal antibody directed against the fatigue-prone type II fibers. Pretraining and posttraining skeletal muscle specimens were examined histologically. A significant fiber type conversion was achieved in both group A and group B animals, with each group achieving greater than 50 percent conversion from fatigue-prone (type II) muscle fibers to fatigue-resistant (type I) muscle fibers. The continence time was different for both groups. Biopsy specimens 1 cm from the electrodes revealed that fiber type transformation was uniform throughout this region of the sphincters. Skeletal muscle fibers within both groups demonstrated a reduction in their fiber diameter and volume. Fiber type transformation is possible in this unique canine island-flap rectus abdominis sphincter model. The relative design of the flap with preservation of the skeletal muscle resting length and neuronal and vascular supply are important characteristics when designing a functional dynamic flap for stomal continence.  相似文献   

5.
We have shown that fatigue resistance can be induced in rabbit tibialis anterior (TA) muscles without excessive power loss by continuous stimulation at low frequencies, such as 5 Hz, and that the same result is obtained by delivering a 10-Hz pattern in equal on/off periods. Here we ask whether the same phenotype could be produced with daily amounts of stimulation that would be more appropriate for clinical use. We stimulated rabbit TA muscles for 6 wk, alternating fixed 30-min on periods of stimulation at 10 Hz with off periods of different duration. All patterns transformed fast-glycolytic fibers into fast-oxidative fibers. The muscles had fatigue-resistant properties but retained a higher contractile speed and power production than muscles transformed completely to the slow-oxidative type. We conclude that in the rabbit as little as one 30-min period of stimulation in 24 h can result in a substantial increase in the resistance of the muscle to fatigue.  相似文献   

6.
Recent progress in defining molecular components of pathways controlling early stages of myogenesis has been substantial, but regulatory factors that govern the striking functional specialization of adult skeletal muscle fibers in vertebrate organisms have not yet been identified. A more detailed understanding of the temporal and spatial patterns by which specialized fiber characteristics arise may provide dues to the identity of the relevant regulatory factors. In this study, we used immunohistochemical, in situ hybridization, and Northern blot analyses to examine the time course and spatial characteristics of expression of myoglobin protein and mRNA during development of the distal hindlimb in the mouse. In adult animals, myoglobin is expressed selectively in oxidative, mitochondria-rich, fatigue-resistant myofibers, and it provides a convenient marker for this particular subset of specialized fibers. We observed only minimal expression of myoglobin in the hindlimb prior to the second day after birth, but a rapid and large (50-fold) induction of this gene in the ensuing neonatal period. Myoglobin expression was limited, however, to fibers located centrally within the limb which coexpress myosin isoforms characteristic of type I, IIA, and IIX fibers. This induction of myoglobin expression within the early postnatal period was accompanied by increased expression of nuclear genes encoding mitochondrial proteins, and exhibited a time course similar to the upregulation of myoglobin and mitochondrial protein expression that can be induced in adult muscle fibers by continuous motor nerve stimulation. This comparison suggests that progressive locomotor activity of neonatal animals may provide signals which trigger the development of the specialized features of oxidative, fatigue-resistant skeletal muscle fibers. © 1996 Wiley-Liss, Inc.  相似文献   

7.
8.
Muscle fatigue is both multifactorial and task dependent. Electrical stimulation may assist individuals with paralysis to perform functional activities [functional electrical stimulation (FES), e.g., standing or walking], but muscle fatigue is a limiting factor. One method of optimizing force is to use stimulation patterns that exploit the catchlike property of skeletal muscle [catchlike-inducing trains (CITs)]. Although nonisometric (dynamic) contractions are important parts of both normal physiological activation of skeletal muscles and FES, no previous studies have attempted to identify the effect that the load being lifted by a muscle has on the fatigue produced. This study examined the effects of load on fatigue during dynamic contractions and the augmentation produced by CITs as a function of load. Knee extension in healthy subjects was electrically elicited against three different loads. The highest load produced the least excursion, work, and average power, but it produced the greatest fatigue. CIT augmentation was greatest at the highest load and increased with fatigue. Because CITs were effective during shortening contractions for a variety of loads, they may be of benefit during FES applications.  相似文献   

9.
It is well documented that repeated voluntary activity or electrical stimulation of skeletal muscle results in a decline in force production or power output. However, the precise physiological causes of "muscle fatigue" are not yet well understood. It is conceivable that the mechanism(s) may lie either in the conduction of action potentials in the central and peripheral nervous systems or in the transformation of the electrical event into mechanical force production by the muscle itself. In fact, none of the components of the electrical pathway from generation of impulses in the brain to their conduction over the neuron and the excitable membranes of the muscle can as yet be ruled out as potential contributors to the fatigue process. Relative to that on conduction failure, more information exists concerning the possibility that a defect in the excitation contraction coupling process in skeletal muscle, e.g., intracellular acidosis, inadequate supply of energy for contraction, or a disruption in Ca2+ homeostasis may also be significant in compromising force production following sustained activity. Despite this, the amount of conflicting data derived from these experiments has hindered the resolution of this question. In the future more attention must be given to such issues as the type of activity used to elicit fatigue and the fiber composition of the muscles studied. This is imperative as these factors clearly impact the nature of correlations between the biochemical and physiological events in muscle that are required to support prospective fatigue mechanisms.  相似文献   

10.
We recently demonstrated a novel effective therapeutic regimen for treating hamster heart failure based on injection of bone marrow mesenchymal stem cells (MSCs) or MSC-conditioned medium into the skeletal muscle. The work highlights an important cardiac repair mechanism mediated by the myriad of trophic factors derived from the injected MSCs and local musculature that can be explored for non-invasive stem cell therapy. While this therapeutic regimen provides the ultimate proof that MSC-based cardiac repair is mediated by the trophic actions independent of MSC differentiation or stemness, the trophic factors responsible for cardiac regeneration after MSC therapy remain largely undefined. Toward this aim, we took advantage of the finding that human and porcine MSCs exhibit species-related differences in expression of trophic factors. We demonstrate that human MSCs when compared to porcine MSCs express and secrete 5-fold less vascular endothelial growth factor (VEGF) in conditioned medium (40 ± 5 and 225 ± 17 pg/ml VEGF, respectively). This deficit in VEGF output was associated with compromised cardiac therapeutic efficacy of human MSC-conditioned medium. Over-expression of VEGF in human MSCs however completely restored the therapeutic potency of the conditioned medium. This finding indicates VEGF as a key therapeutic trophic factor in MSC-mediated myocardial regeneration, and demonstrates the feasibility of human MSC therapy using trophic factor-based cell-free strategies, which can eliminate the concern of potential stem cell transformation.  相似文献   

11.
HF is syndrome initiated by a reduction in cardiac function and it is characterized by the activation of compensatory mechanisms. Muscular fatigue and dyspnoea are the more common symptoms in HF; these may be due in part to specific skeletal muscle myopathy characterized by reduced oxidative capacity, a shift from slow fatigue resistant type I to fast less fatigue resistant type II fibers and downregulation of myogenic regulatory factors (MRFs) gene expression that can regulate gene expression of nicotinic acetylcholine receptors (nAChRs). In chronic heart failure, skeletal muscle phenotypic changes could influence the maintenance of the neuromuscular junction morphology and nAChRs gene expression during this syndrome. Two groups of rats were studied: control (CT) and Heart Failure (HF), induced by a single intraperitoneal injection of monocrotaline (MCT). At the end of the experiment, HF was evaluated by clinical signs and animals were sacrificed. Soleus (SOL) muscles were removed and processed for morphological, morphometric and molecular NMJ analyses. Our major finding was an up-regulation in the gene expression of the alpha1 and epsilon subunits of nAChR and a spot pattern of nAChR in SOL skeletal muscle in this acute monocrotaline induced HF. Our results suggest a remodeling of nAChR alpha1 and epsilon subunit during heart failure and may provide valuable information for understanding the skeletal muscle myopathy that occurs during this syndrome.  相似文献   

12.
The loss of slow skeletal muscle troponin T (TnT) results in a recessive nemaline myopathy in the Amish featured with lethal respiratory failure. The genes encoding slow TnT and cardiac troponin I (TnI) are closely linked. Ex vivo promoter analysis suggested that the 5′-enhancer region of the slow TnT gene overlaps with the structure of the upstream cardiac TnI gene. Using transgenic expression of exogenous cardiac TnI to rescue the postnatal lethality of a mouse line in which the entire cardiac TnI gene was deleted, we investigated the effect of enhancer deletion on slow TnT gene expression in vivo and functional consequences. The levels of slow TnT mRNA and protein were significantly reduced in the diaphragm muscle of adult double transgenic mice. The slow TnT-deficient (ssTnT-KD) diaphragm muscle exhibited atrophy and decreased ratios of slow versus fast isoforms of TnT, TnI, and myosin. Consistent with the changes toward more fast myofilament contents, ssTnT-KD diaphragm muscle required stimulation at higher frequency for optimal tetanic force production. The ssTnT-KD diaphragm muscle also exhibited significantly reduced fatigue tolerance, showing faster and more declines of force with slower and less recovery from fatigue as compared with the wild type controls. The natural switch to more slow fiber contents during aging was partially blunted in the ssTnT-KD skeletal muscle. The data demonstrated a critical role of slow TnT in diaphragm function and in the pathogenesis and pathophysiology of Amish nemaline myopathy.  相似文献   

13.
Skeletal muscle has long been used in the field of cardiac surgery. Its use has progressed from providing myocardial reinforcement to assisting the heart by actively pumping blood. Early experiments revealed that skeletal muscle assistance could augment pressures and blood flow; however, the results were short-lived due to muscle fatigue. It was later shown that skeletal muscle can be conditioned electrically to be fatigue resistant and therefore may be useful for performing cardiac-type work. Once the details were formed of how to stimulate and manipulate the muscle to assist the heart, several configurations were devised. Cardiomyoplasty and aortomyoplasty refer to wrapping skeletal muscle around the heart or aorta, respectively. These techniques have been applied in humans; however, the effectiveness is controversial. Although most patients improve clinically, the hemodynamic parameters have not shown consistent improvements, and survival data are unknown. Skeletal muscle ventricles offer a promising alternative to both cardiomyoplasty and aortomyoplasty. These are completely separate pumping chambers constructed from skeletal muscle and connected to the circulation in a variety of configurations. Although these have not been tried in humans, the animal data appear quite convincing. The skeletal muscle ventricles have shown the greatest improvements on hemodynamic parameters with great stability over time.  相似文献   

14.
15.
16.
17.

Background

Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance.

Methods

Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review.

Results

Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units.

Conclusion

Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.  相似文献   

18.
Systemic injections of AAV vectors generally transduce to the liver more effectively than to cardiac and skeletal muscles. The short hairpin RNA (shRNA)-expressing AAV9 (shRNA-AAV9) can also reduce target gene expression in the liver, but not enough in cardiac or skeletal muscles. Higher doses of shRNA-AAV9 required for inhibiting target genes in cardiac and skeletal muscles often results in shRNA-related toxicity including microRNA oversaturation that can induce fetal liver failure.In this study, we injected high-dose shRNA-AAV9 to neonates and efficiently silenced genes in cardiac and skeletal muscles without inducing liver toxicity. This is because AAV is most likely diluted or degraded in the liver than in cardiac or skeletal muscle during cell division after birth. We report that this systemically injected shRNA-AAV method does not induce any major side effects, such as liver dysfunction, and the dose of shRNA-AAV is sufficient for gene silencing in skeletal and cardiac muscle tissues. This novel method may be useful for generating gene knockdown in skeletal and cardiac mouse tissues, thus providing mouse models useful for analyzing diseases caused by loss-of-function of target genes.  相似文献   

19.
Implantable electronic stimulators were used to subject fast-twitch tibialis anterior and extensor digitorum longus muscles of adult rabbits to a chronically increased level of use. Stimulation was discontinued after 6 weeks and physiological, histochemical and biochemical properties of the muscles were examined at intervals over the ensuing 20 weeks. Previous work had shown that 6 weeks of stimulation was sufficient to bring about a substantial transformation of type in fast-twitch muscles, which then exhibited much of the character of muscles of the slow-twitch type. The present experiments showed that these stimulation-induced changes were completely reversible. The time-course of reversion was such that the muscles had recovered their original fast properties by about 12 weeks after the cessation of stimulation. The contractile characteristics and post-tetanic potentiation typical of fast muscle returned rapidly, in only 3-4 weeks, and over the same period the proportion of histochemical type 1 fibres declined from about 70% to control levels. Changes in fatigue-resistance, capillary density and enzyme activity followed a more prolonged time-course; in particular, the decline in the activity of enzymes of oxidative metabolism corresponded closely to that already established for the mitochondrial volume fraction. Reacquisition of fast properties was not accompanied by any changes in specific force-generating capacity. Observations from these experiments and from a related morphological study fit into a 'first-in, last-out' pattern for the response to stimulation and recovery. The slow-to-fast reversion that takes place during the recovery period provides a further opportunity for testing causal associations within the events underlying type transformation. It has important consequences for therapeutic applications that make use of the fatigue-resistant character of chronically stimulated muscle.  相似文献   

20.
Adult skeletal muscle fibers can be categorized into fast and slow twitch subtypes based on specialized contractile and metabolic properties and on distinctive patterns of muscle gene expression. Muscle fiber-type characteristics are dependent on the frequency of motor nerve stimulation and are thought to be controlled by calcium-dependent signaling. The calcium, calmodulin-dependent protein phosphatase, calcineurin, stimulates slow fiber-specific gene promoters in cultured skeletal muscle cells, and the calcineurin inhibitor, cyclosporin A, inhibits slow fiber gene expression in vivo, suggesting a key role of calcineurin in activation of the slow muscle fiber phenotype. Calcineurin has also been shown to induce hypertrophy of cardiac muscle and to mediate the hypertrophic effects of insulin-like growth factor-1 on skeletal myocytes in vitro. To determine whether activated calcineurin was sufficient to induce slow fiber gene expression and hypertrophy in adult skeletal muscle in vivo, we created transgenic mice that expressed activated calcineurin under control of the muscle creatine kinase enhancer. These mice exhibited an increase in slow muscle fibers, but no evidence for skeletal muscle hypertrophy. These results demonstrate that calcineurin activation is sufficient to induce the slow fiber gene regulatory program in vivo and suggest that additional signals are required for skeletal muscle hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号