首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial uncoupling protein 1 is usually associated with brown adipose tissue but has recently been discovered in rat and mouse thymus. We wished to establish whether there was a thermogenic role for UCP 1 in thymus and thus examined the effect of 5 weeks cold-acclimation on rat thymus tissue abundance, thymocyte oxygen consumption, thymus mitochondrial abundance, uncoupling protein 1 expression and function. We found that thymocytes from cold-acclimated rats had oxygen consumption rates 8 times less than those from rats held at room temperature and that thymocytes from cold-acclimated rats or rats kept at room temperature were noradrenaline insensitive. In addition, we found that thymus tissue or mitochondrial abundance was not increased after cold-acclimation. However uncoupling protein 1 expression per unit mass of mitochondria was increased after cold-acclimation, as determined by immunoblotting (approximately 1.7-fold) and GDP binding (approximately 1.5-fold). Consistent with our protein expression data, we also observed an increased, state 4 (approximately 1.5-fold), GDP-inhibitable (approximately 1.3-fold) and palmitate activatable (approximately 1.6-fold) oxygen consumption rates in isolated thymus mitochondria. However, extrapolation of our data showed that cold-acclimation only increased the amount of UCP 1 per gram of thymus tissue approximately 1.2-fold. Taken together, we conclude that UCP 1 does not have a thermogenic role in thymus.  相似文献   

2.
Clare M. Brennan 《BBA》2006,1757(11):1463-1468
Mitochondrial uncoupling protein 1 is usually associated with brown adipose tissue but has recently been discovered in rat and mouse thymus. We wished to establish whether there was a thermogenic role for UCP 1 in thymus and thus examined the effect of 5 weeks cold-acclimation on rat thymus tissue abundance, thymocyte oxygen consumption, thymus mitochondrial abundance, uncoupling protein 1 expression and function. We found that thymocytes from cold-acclimated rats had oxygen consumption rates 8 times less than those from rats held at room temperature and that thymocytes from cold-acclimated rats or rats kept at room temperature were noradrenaline insensitive. In addition, we found that thymus tissue or mitochondrial abundance was not increased after cold-acclimation. However uncoupling protein 1 expression per unit mass of mitochondria was increased after cold-acclimation, as determined by immunoblotting (∼ 1.7-fold) and GDP binding (∼ 1.5-fold). Consistent with our protein expression data, we also observed an increased, state 4 (∼ 1.5-fold), GDP-inhibitable (∼ 1.3-fold) and palmitate activatable (∼ 1.6-fold) oxygen consumption rates in isolated thymus mitochondria. However, extrapolation of our data showed that cold-acclimation only increased the amount of UCP 1 per gram of thymus tissue ∼ 1.2-fold. Taken together, we conclude that UCP 1 does not have a thermogenic role in thymus.  相似文献   

3.
In this study we show that mitochondrial uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) and thymus mitochondria can be ubiquitinylated and degraded by the cytosolic proteasome. Using a ubiquitin conjugating system, we show that UCP1 can be ubiquitinylated in vitro. We demonstrate that UCP1 is ubiquitinylated in vivo using isolated mitochondria from brown adipose tissue, thymus and whole brown adipocytes. Using an in vitro ubiquitin conjugating-proteasome degradation system, we show that the cytosolic proteasome can degrade UCP1 at a rate commensurate with the half-life of UCP1 (i.e. 30-72h in brown adipocytes and ~3h, in thymocytes). In addition, we demonstrate that the cytoplasmic proteasome is required for UCP1 degradation from mitochondria that the process is inhibited by the proteasome inhibitor MG132 and that dissipation of the mitochondrial membrane potential inhibits degradation of UCP1. There also appears to be a greater amount of ubiquitinylated UCP1 associated with BAT mitochondria from cold-acclimated animals. We have also identified (using immunoprecipitation coupled with mass spectrometry) ubiquitinylated proteins with molecular masses greater than 32kDa, as being UCP1. We conclude that there is a role for ubiquitinylation and the cytosolic proteasome in turnover of mitochondrial UCP1. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

4.
Using an antibody specific and selective to mitochondrial uncoupling protein 1 (UCP1) peptide, this study confirms the observation that UCP 1 is present in thymocytes isolated from UCP 1 wild-type, but not UCP 1 knock-out mice. UCP 1 is also shown to be present in thymocytes isolated from rat. It was also demonstrated that an antibody raised to the full-length UCP 1 protein appears to be non-specific for UCP 1, as it detects protein in UCP 1 wild-type and UCP 1 knock-out mice, protein in mitochondria isolated from brown adipose tissue of both UCP 1 wild-type and UCP 1 knock-out mice, as well as detecting protein in mitochondria isolated from rat spleen, kidney, skeletal muscle and liver, tissues that do not express UCP 1. We were also able to show that CIDEA, a soluble protein with a suggested role in regulating UCP 1 function, is equally abundant in thymocytes from UCP 1 wild-type and UCP 1 knock-out mice. Taken together our data demonstrate that (a) UCP 1 is present in rat and mouse thymocytes, (b) that the antibody to full-length UCP 1 is not specific for UCP 1 and (c) that the absence of UCP 1 does not affect native expression of CIDEA in thymocytes.  相似文献   

5.
To date, UCP 3 has only been associated with skeletal muscle and brown adipose tissue (BAT). Using RT-PCR/PCR methodology, we show that human spleen and human thymus contain UCP 3. In addition, using peptide antibodies, previously demonstrated to be selective for UCP 3, we show that UCP 3 protein is present in mitochondria isolated from rat thymus and mitochondria isolated from reticulocytes, monocytes and lymphocytes of rat spleen. UCP 3 protein expression is also starvation-sensitive. UCP 3 abundance is augmented in mitochondria isolated from thymus and mitochondria isolated from lymphocytes of the spleen from fasted rats when compared to fed controls. The results are consistent with a role for UCP 3 in developing lymphocytes, thymus atrophy and fatty acid utilisation in spleen and thymus.  相似文献   

6.
The aim of this study was to demonstrate the constitutive expression of mitochondrial uncoupling protein 1 (UCP 1) in pure thymocytes using laser scanning confocal microscopic imagery. To that end we probed thymocytes from UCP 1 knock-out and wild-type mice. Mitochondrial location in thymocytes was determined using Mitotracker Red and the nucleus was labelled using Hoescht stain. We demonstrate that all cells investigated were thymocytes as determined by a monoclonal antibody specific for the thymocyte surface marker Thy 1 (CD90) pre-coupled to a fluorescent labelled (Alexa 448, green). Using a primary peptide antibody specific to UCP 1, and secondary fluorescently labelled (Alexa 647, magenta) antibody, we were able to demonstrate that UCP 1 is associated with mitochondria in thymocytes from UCP 1 wild-type mice but not thymocytes from UCP1-knock-out mice. These are the first images demonstrating the presence of UCP 1 in thymocyte mitochondria, in situ, and the first to clearly demonstrate UCP 1 expression in cells other than brown adipocytes. We conclude that mouse thymocytes contain UCP 1 in their mitochondria.  相似文献   

7.
Mitochondrial uncoupling protein 3 (UCP3) is constitutively expressed in mitochondria from thymus and spleen of mice, and confocal microscopy has been used to visualize UCP3 in situ in mouse thymocytes. UCP3 is present in mitochondria of thymus and spleen up to at least 16 weeks after birth, but levels decrease by a half in thymus and a fifth in spleen after three weeks, probably reflecting the suckling to weaning transition. UCP3 protein levels increase approximately 3-fold in thymus on starvation, but expression levels in spleen were unaffected by starvation. Lack of UCP3 had little effect on thymus mass or thymocyte number. However, lack of UCP3 affected spleen mass and splenocyte number (in the fasted state) and results in reduced CD4+ single positive cell numbers and reduced double negative cells in the thymus, but as a 2-fold increase in the proportion of CD4(+), CD8(+) and DP cells in spleen. Starvation attenuates these proportionate differences in the spleen. A lack of UCP3 had no apparent effect on basal oxygen consumption of thymocytes or splenocytes or on oxygen consumption due to mitochondrial proton leak. Splenocytes from UCP3 knock-out mice are also more resistant to apoptosis than those from wild-type mice. Overall we can conclude that UCP3 affects thymocyte and spleen cell profiles in the fed and fasted states.  相似文献   

8.
The aim of this study was to demonstrate the constitutive expression of mitochondrial uncoupling protein 1 (UCP 1) in pure thymocytes using laser scanning confocal microscopic imagery. To that end we probed thymocytes from UCP 1 knock-out and wild-type mice. Mitochondrial location in thymocytes was determined using Mitotracker Red and the nucleus was labelled using Hoescht stain. We demonstrate that all cells investigated were thymocytes as determined by a monoclonal antibody specific for the thymocyte surface marker Thy 1 (CD90) pre-coupled to a fluorescent labelled (Alexa 448, green). Using a primary peptide antibody specific to UCP 1, and secondary fluorescently labelled (Alexa 647, magenta) antibody, we were able to demonstrate that UCP 1 is associated with mitochondria in thymocytes from UCP 1 wild-type mice but not thymocytes from UCP1-knock-out mice. These are the first images demonstrating the presence of UCP 1 in thymocyte mitochondria, in situ, and the first to clearly demonstrate UCP 1 expression in cells other than brown adipocytes. We conclude that mouse thymocytes contain UCP 1 in their mitochondria.  相似文献   

9.
Mammalian uncoupling protein 1 (UCP1) mediates nonshivering thermogenesis in brown adipose tissue. We previously reported on the presence of a UCP1 orthologue in ectothermic fish and observed downregulation of UCP1 gene expression in the liver of the common carp. Neither the function of UCP1, nor the mode of UCP1 activation is known in carp liver mitochondria. Here, we compared the proton conductance at 25°C of liver mitochondria isolated from carp either maintained at 20°C (warm-acclimated, WA) or exposed to 8°C (cold-acclimated, CA) water temperature for 7–10 days. Liver mitochondria from WA carp had higher state four rates of oxygen consumption and greater proton conductance at high membrane potential. Liver mitochondria from WA, but not from CA, carp showed a strong increase in proton conductance when palmitate (or 4-hydroxy-trans-2-nonenal, HNE) was added, and this inducible proton conductance was prevented by addition of GDP. This fatty acid sensitive proton leak is likely due to the expression of UCP1 in the liver of WA carp. The observed biochemical properties of proton leak strongly suggest that carp UCP1 is a functional uncoupling protein with broadly the same activatory and inhibitory characteristics as mammalian UCP1. Significant UCP1 expression was also detected in our previous study in whole brain of the carp. We here observed a twofold increase of UCP1 mRNA in carp brain following cold exposure, suggesting a role of UCP1 in the thermal adaptation of brain metabolism. In situ hybridization located the UCP1 gene expression to the optic tectum responsible for visual system control, the descending trigeminal tract and the solitary tract. Taken together, this study characterises uncoupling protein activity in an ectotherm for the first time. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
GDP在体外对大鼠脑线粒体脱耦联蛋白活性和表达的影响   总被引:1,自引:0,他引:1  
Xia C  Liu JZ  Xu Y 《生理学报》2008,60(4):492-496
本研究通过GDP体外处理大鼠脑组织块,观察GDP对脑线粒体脱耦联蛋白(uncoupling proteins,UCPs)活性、UCP4和UCP5表达的影响,以探讨嘌呤核苷酸对大鼠脑UCPs的调节作用.取Sprague-Dawley大鼠双侧大脑半球,将脑组织切成约8-10 mm3的脑组织块,与含1 mmol/L GDP的孵育介质共孵育30 min后,匀浆并差速离心分离提取大鼠脑组织线粒体,采用[3H]-GTP结合法测定UCPs活性,并以Scatehard作图法计算两者结合的解离常数(Kd)和最大结合量(Bmax);RT-PCR和Western blot分别检测UCP4和UCP5的mRNA和蛋白表达.结果显示,1 mmol/L GDP可降低体外大鼠脑组织线粒体中UCPs与[3H]-GTP结合的Bmax,提高Kd,但对脑纰织中UCP4和UCP5 mRNA和蛋白表达量的改变无统计学意义.上述结果提示,GDP可直接抑制体外大鼠脑组织中UCPs的活性,但并不影响UCP4和UCP5的表达.  相似文献   

11.
《BBA》2014,1837(12):2017-2030
Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(−/−) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).  相似文献   

12.
Repeated injections of 6-hydroxydopamine in Syrian hamster neonates maintained under long-day (16L:8D) photoperiod for 30 days retarded body growth and cellular proliferation in brown adipose tissue but did not affect the cellular content of mitochondrial proteins. Sympathectomy reduced GDP binding to isolated mitochondria without affecting the organelle uncoupling protein (UCP) content. Unilateral surgical denervation of the brown fat pad of 30-day-old hamsters caused loss of tissue protein and succinate dehydrogenase as well as reductions in GDP binding and UCP content of isolated mitochondria but did not prevent an increase in GDP binding observed after 1 month exposure to a short-day photoperiod. The increased GDP binding was not due to increased UCP content. These results indicate that an adrenergic neural input may not be essential for UCP expression in Syrian hamsters and that changes in GDP binding observed in a short-day photoperiod environment can be observed in denervated tissue in the absence of changes in mitochondrial UCP content.  相似文献   

13.
Rat liver mitochondria contain a negligible amount of mitochondrial uncoupling protein UCP2 as indicated by 3H-GTP binding. UCP2 recruitment in hepatocytes during infection may serve to decrease mitochondrial production of reactive oxygen species (ROS), and this, in turn, would counterbalance the increased oxidative stress. To characterize in detail UCP2 recruitment in hepatocytes, we studied rats pretreated with lipopolysaccharide (LPS) or hepatocytes isolated from them, as an in vitro model for the systemic response to bacterial infection. LPS injection resulted in 3.3- or 3-fold increase of UCP2 mRNA in rat liver and hepatocytes, respectively, as detected by real-time RT-PCR on a LightCycler. A concomitant increase in UCP2 protein content was indicated either by Western blots or was quantified by up to three-fold increase in the number of 3H-GTP binding sites in mitochondria of LPS-stimulated rats. Moreover, H2O2 production was increased by GDP only in mitochondria of LPS-stimulated rats with or without fatty acids and carboxyatractyloside. When monitored by JC1 fluorescent probe in situ mitochondria of hepatocytes from LPS-stimulated rats exhibited lower membrane potential than mitochondria of unstimulated rats. We have demonstrated that the lower membrane potential does not result from apoptosis initiation. However, due to a small extent of potential decrease upon UCP2 recruitment, justified also by theoretical calculations, we conclude that the recruited UCP2 causes only a weak uncoupling which is able to decrease mitochondrial ROS production but not produce enough heat for thermogenesis participating in a febrile response.  相似文献   

14.
Our laboratory has previously demonstrated the presence of constitutively expressed mitochondrial uncoupling protein 1 in mouse thymocytes. In our endeavours to understand the role of mitochondrial uncoupling protein 1 in thymocyte function, we compared cell profiles in thymus and spleen of wild-type with those of UCP 1 knock-out mice, which in turn led to comparative investigations of apoptotic potential in thymocytes from these mice. We demonstrate that spleen cell numbers were reduced ~ 3-fold in UCP 1 knock-out mice compared to wild-type mice. We record a halving of CD8 single positive cell numbers in thymus with a significant incremental increase in CD4/CD8 double positives cell numbers in the thymus of UCP 1 knock-out mice compared to wild-type mice. These data are mirrored by an approximate halving of CD8 single positive cell numbers and a doubling of CD4/CD8 double positive cell numbers in the spleen of UCP 1 knock-out mice compared to wild-type mice. These differences are most probably explained by our observations of decreased apoptotic potential and higher ATP levels in thymocytes of UCP 1 knock-out mice when compared to wild-type controls. We conclude that constitutively expressed UCP 1 is a factor in determining T-cell population selection in mice.  相似文献   

15.
The ability of native uncoupling protein-3 (UCP3) to uncouple mitochondrial oxidative phosphorylation is controversial. We measured the expression level of UCP3 and the proton conductance of skeletal muscle mitochondria isolated from transgenic mice overexpressing human UCP3 (UCP3-tg) and from UCP3 knockout (UCP3-KO) mice. The concentration of UCP3 in UCP3-tg mitochondria was approximately 3 microg/mg protein, approximately 20-fold higher than the wild type value. UCP3-tg mitochondria had increased nonphosphorylating respiration rates, decreased respiratory control, and approximately 4-fold increased proton conductance compared with the wild type. However, this increased uncoupling in UCP3-tg mitochondria was not caused by native function of UCP3 because it was not proportional to the increase in UCP3 concentration and was neither activated by superoxide nor inhibited by GDP. UCP3 was undetectable in mitochondria from UCP3-KO mice. Nevertheless, UCP3-KO mitochondria had unchanged respiration rates, respiratory control ratios, and proton conductance compared with the wild type under a variety of assay conditions. We conclude that uncoupling in UCP3-tg mice is an artifact of transgenic expression, and that UCP3 does not catalyze the basal proton conductance of skeletal muscle mitochondria in the absence of activators such as superoxide.  相似文献   

16.
The impact of uncoupling protein (UCP) 1, UCP3 and UCP3s expressed in yeast on oxidative phosphorylation, membrane potential and H+ transport is determined. Intracellular ATP synthesis is inhibited by UCP3, much more than by UCP1, while similar levels of UCP3 and UCP1 exist in the mitochondrial fractions. Measurements of membrane potential and H+ efflux in isolated mitochondria show that, different from UCP1, with UCP3 and UCP3s there is a priori a preponderant uncoupling not inhibited by GDP. The results are interpreted to show that UCP3 and UCP3s in yeast mitochondria are in a deranged state causing uncontrolled uncoupling, which does not represent their physiological function.  相似文献   

17.
Physiological role of mitochondrial uncoupling proteins UCP2 and UCP3, homologous to UCP1 from brown adipose tissue, is unclear. It was proposed recently that UCP2 and UCP3 are metabolic triggers that switch oxidation of glucose to oxidation of fatty acids, exporting pyruvate from mitochondria. In the present study we tried to verify this hypothesis using ground squirrels (Spermophilus undulatus), since expression of all UCPs in different tissues increases during winter season, and UCP1 is abundant in brown fat. We confirmed the possibility of nonspecific transport of pyruvate through UCP1 in brown fat mitochondria and tried to identify similar transport in liver and skeletal muscle mitochondria where UCP2 and UCP3 are expressed. Transport of pyruvate mediated by UCP1 in mitochondria of brown fat was observed using valinomycin-induced swelling of non-respiring mitochondria in 55 mM potassium pyruvate and was inhibited by GDP. In contrast, mitochondria of liver and skeletal muscles in similar conditions did not exhibit electrogenic transport of pyruvate anions that could be related to functioning of UCP2 and UCP3. At the same time, functioning of pyruvate carrier was detected in these mitochondria by nigericin-induced passive swelling or valinomycin-induced active swelling in potassium pyruvate that was inhibited by α-CHC, a specific inhibitor of the pyruvate carrier. Thus, our results suggest that in contrast to UCP1 of brown fat, UCP2 and UCP3 from intact liver and skeletal muscle mitochondria of winter active ground squirrels are unable to carry out pyruvate transport.  相似文献   

18.
Uncoupling proteins 1 and 3 are regulated differently   总被引:3,自引:0,他引:3  
Hagen T  Zhang CY  Vianna CR  Lowell BB 《Biochemistry》2000,39(19):5845-5851
Using a heterologous yeast expression system, we have previously found a marked discordance between the effects of uncoupling protein (UCP) 1 and UCP3L on basal O(2) consumption in whole yeast versus isolated mitochondria. In whole yeast, UCP3L produces a greater stimulation of basal O(2) consumption, while in isolated mitochondria, UCP1 produces a much greater effect. As shown previously and in this report, UCP3L, in contrast to UCP1, is not inhibited by purine nucleotides. In the present study, we addressed two hypothetical mechanisms that could account for the observed discordance: (i) in whole yeast, purine nucleotides inhibit UCP1 but not UCP3L and (ii) preparations of isolated mitochondria lack an activator of UCP3L that is normally present in vivo. By use of a mutant of UCP1 that lacks purine nucleotide inhibition, it is demonstrated that cytosolic concentrations of purine nucleotides present in yeast effectively inhibit UCP1 activity. This suggests that the lower activity of UCP1 compared to UCP3L in whole yeast is due to purine nucleotide inhibition of UCP1 but not UCP3L. As potential activators of UCP3L we tested free fatty acids in whole yeast and isolated mitochondria. While UCP1 was strongly activated by free fatty acids, no stimulatory effect on UCP3L was observed. In summary, this study indicates that UCP1 and UCP3L differ in their regulation by purine nucleotides and free fatty acids. This different regulation may be related to different physiological functions of the two proteins.  相似文献   

19.
Mice lacking the thermogenic mitochondrial membrane protein UCP1 (uncoupling protein 1) - and thus all heat production from brown adipose tissue - can still adapt to a cold environment (4 °C) if successively transferred to the cold. The mechanism behind this adaptation has not been clarified. To examine possible adaptive processes in the skeletal muscle, we isolated mitochondria from the hind limb muscles of cold-acclimated wild-type and UCP1(–/–) mice and examined their bioenergetic chracteristics. We observed a switch in metabolism, from carbohydrate towards lipid catabolism, and an increased total mitochondrial complement, with an increased total ATP production capacity. The UCP1(–/–) muscle mitochondria did not display a changed state-4 respiration rate (no uncoupling) and were less sensitive to the uncoupling effect of fatty acids than the wild-type mitochondria. The content of UCP3 was increased 3-4 fold, but despite this, endogenous superoxide could not invoke a higher proton leak, and the small inhibitory effect of GDP was unaltered, indicating that it was not mediated by UCP3. Double mutant mice (UCP1(–/–) plus superoxide dismutase 2-overexpression) were not more cold sensitive than UCP1(–/–), bringing into question an involvement of reactive oxygen species (ROS) in activation of any alternative thermogenic mechanism. We conclude that there is no evidence for an involvement of UCP3 in basal, fatty-acid- or superoxide-stimulated oxygen consumption or in GDP sensitivity. The adaptations observed did not imply any direct alternative process for nonshivering thermogenesis but the adaptations observed would be congruent with adaptation to chronically enhanced muscle activity caused by incessant shivering in these mice.  相似文献   

20.
Two splice variants of the human uncoupling protein-3 (UCP3L and UCP3S) are highly expressed in skeletal muscle. The properties of UCP3L and S have been compared to those of UCP1 in a heterologous yeast expression system under the control of the galactose promoter. Both UCP3 isoforms were found to strongly impair the coupling efficiency of respiring cells thus resulting in increased thermogenesis. The uncoupling properties of both UCP3L and S could be clearly demonstrated also in isolated yeast mitochondria both in terms of coupled respiration and in the capacity to polarize the inner membrane in conditions of limited substrate availability. Contrary to what was observed with mitochondria containing UCP1, millimolar GDP and ATP had little if any effect on the uncoupling activity of UCP3. A very marked uncoupling of whole cells and isolated mitochondria was observed at very low expression levels of UCP3S indicating that the short isoform is more active than the long one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号