首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minoda A  Sonoike K  Okada K  Sato N  Tsuzuki M 《FEBS letters》2003,553(1-2):109-112
Photosystem (PS) II activity of a sulfoquinovosyl diacylglycerol (SQDG)-deficient mutant (hf-2) of Chlamydomonas was partially decreased compared with that of wild-type. The susceptibility to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modified in the mutant. Photometric measurements in the isolated thylakoid membranes of hf-2 revealed that the lowered activity in the mutant was derived from a decrease in the efficiency of the electron donation from water to tyrosine Z, not from the efficiency of the electron transport from Q(A) to Q(B). This result was confirmed by the decay kinetics of chlorophyll fluorescence determined in vivo. We conclude that SQDG contributes to maintaining the conformation of PSII complexes, particularly that of D1 polypeptides, which are necessary for maximum activities in Chlamydomonas.  相似文献   

2.
Sato N  Aoki M  Maru Y  Sonoike K  Minoda A  Tsuzuki M 《Planta》2003,217(2):245-251
To examine the role of sulfoquinovosyl diacylglycerol (SQDG) in thylakoid membranes, we compared the structural and functional properties of photosystem II (PSII) between a mutant of Chlamydomonas reinhardtii defective in SQDG ( hf-2) and the wild type. The PSII core complex of hf-2, as compared with that of the wild type, showed structural fragility when solubilized with a detergent, dodecyl beta- d-maltoside, suggesting that the physical properties of the PSII complex were altered by the loss of SQDG. On the other hand, exposure of the cells to 41 degrees C for 120 min in the dark decreased the PSII activity to 70% and 50% of the initial levels in the wild type and hf-2, respectively, which implies that the PSII activity, in the absence of SQDG, becomes less stable under heat-stress conditions. PSII inactivated to 60% of the initial level by dark incubation at 41 degrees C was reactivated by following illumination even at 41 degrees C to more than 90% in the wild type, but only to 70% in hf-2. These results suggest that PSII inactivated by heat recovers through some mechanism dependent on light, and that SQDG participates in functioning of the mechanism. The conformational disorder of PSII caused by the defect in SQDG might be correlated with the increased susceptibility of its activity to heat-stress.  相似文献   

3.
Sulfoquinovosyl diacylglycerol (SQDG) is involved in the maintenance of photosystem II (PSII) activity in Chlamydomonas reinhardtii[Minoda, A., Sato, N., Nozaki, H., Okada, K., Takahashi, H., Sonoike, K. & Tsuzuki, M. et al. (2002) Eur. J. Biochem.269, 2353-2358]. To understand the spread of the taxa in which PSII interacts with SQDG, especially in cyanobacteria, we produced a mutant defective in the putative sqdB gene responsible for SQDG synthesis from two cyanobacteria, Synechocystis sp. PCC6803 and Synechococcus sp. PCC7942. The mutant of PCC6803, designated SD1, lacked SQDG synthetic ability and required SQDG supplementation for its growth. After transfer from SQDG-supplemented to SQDG-free conditions, SD1 showed decreased net photosynthetic and PSII activities on a chlorophyll (Chl) basis with a decrease in the SQDG content. Moreover, the sensitivity of PSII activity to 3-(3,4-dichlorophenyl)-1,1-dimethylurea and atrazine was increased in SD1. However, SD1 maintained normal amounts of cytochrome b559 and D1 protein (the subunits comprising the PSII complex) on a Chl basis, indicating that the PSII complex content changed little, irrespective of a decrease in the SQDG content. These results suggest that the role of SQDG is the conservation of the PSII properties in PCC6803, consistent with the results obtained with C. reinhardtii. In contrast, the SQDG-null mutant of PCC7942 showed the normal level of PSII activity with little effect on its sensitivity to PSII herbicides. Therefore, the difference in the SQDG requirement for PSII is species-specific in cyanobacteria; this could be of use when investigating the molecular evolution of the PSII complex.  相似文献   

4.
Shunichi Takahashi 《BBA》2005,1708(3):352-361
In photosynthetic organisms, impairment of the activities of enzymes in the Calvin cycle enhances the extent of photoinactivation of Photosystem II (PSII). We investigated the molecular mechanism responsible for this phenomenon in the unicellular green alga Chlamydomonas reinhardtii. When the Calvin cycle was interrupted by glycolaldehyde, which is known to inhibit phosphoribulokinase, the extent of photoinactivation of PSII was enhanced. The effect of glycolaldehyde was very similar to that of chloramphenicol, which inhibits protein synthesis de novo in chloroplasts. The interruption of the Calvin cycle by the introduction of a missense mutation into the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) also enhanced the extent of photoinactivation of PSII. In such mutant 10-6C cells, neither glycolaldehyde nor chloramphenicol has any additional effect on photoinactivation. When wild-type cells were incubated under weak light after photodamage to PSII, the activity of PSII recovered gradually and reached a level close to the initial level. However, recovery was inhibited in wild-type cells by glycolaldehyde and was also inhibited in 10-6C cells. Radioactive labelling and Northern blotting demonstrated that the interruption of the Calvin cycle suppressed the synthesis de novo of chloroplast proteins, such as the D1 and D2 proteins, but did not affect the levels of psbA and psbD mRNAs. Our results suggest that the photoinactivation of PSII that is associated with the interruption of the Calvin cycle is attributable primarily to the inhibition of the protein synthesis-dependent repair of PSII at the level of translation in chloroplasts.  相似文献   

5.
In photosynthetic organisms, impairment of the activities of enzymes in the Calvin cycle enhances the extent of photoinactivation of Photosystem II (PSII). We investigated the molecular mechanism responsible for this phenomenon in the unicellular green alga Chlamydomonas reinhardtii. When the Calvin cycle was interrupted by glycolaldehyde, which is known to inhibit phosphoribulokinase, the extent of photoinactivation of PSII was enhanced. The effect of glycolaldehyde was very similar to that of chloramphenicol, which inhibits protein synthesis de novo in chloroplasts. The interruption of the Calvin cycle by the introduction of a missense mutation into the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) also enhanced the extent of photoinactivation of PSII. In such mutant 10-6C cells, neither glycolaldehyde nor chloramphenicol has any additional effect on photoinactivation. When wild-type cells were incubated under weak light after photodamage to PSII, the activity of PSII recovered gradually and reached a level close to the initial level. However, recovery was inhibited in wild-type cells by glycolaldehyde and was also inhibited in 10-6C cells. Radioactive labelling and Northern blotting demonstrated that the interruption of the Calvin cycle suppressed the synthesis de novo of chloroplast proteins, such as the D1 and D2 proteins, but did not affect the levels of psbA and psbD mRNAs. Our results suggest that the photoinactivation of PSII that is associated with the interruption of the Calvin cycle is attributable primarily to the inhibition of the protein synthesis-dependent repair of PSII at the level of translation in chloroplasts.  相似文献   

6.
PsbT is a small chloroplast-encoded hydrophobic polypeptide associated with the photosystem II (PSII) core complex. A psbT-deficient mutant (Delta psbT) of the green alga Chlamydomonas reinhardtii grows photoautotrophically, whereas its growth is significantly impaired in strong light. To understand the photosensitivity of Delta psbT, we have studied the effect of strong illumination on PSII activity and proteins. It is shown that the level of PSII activity and proteins is reduced in the Delta psbT more significantly than in wild type under strong light. When recovery of the photodamaged PSII is inhibited by a chloroplast protein synthesis inhibitor, the light-induced inactivation and degradation of PSII occur similarly in wild-type and mutant cells. On the contrary, the recovery of PSII activity after partial photoinactivation is remarkably delayed in the Delta psbT cells, suggesting that PsbT is required for efficient recovery of the photodamaged PSII complex. These results therefore present the first evidence for involvement of this small PSII polypeptide in the recovery process. Partial disintegration of the purified PSII core complex and localization of PSII proteins in the resulting PSII subcore complexes have revealed that PsbT is associated with D1/D2 heterodimer. A possible role of PsbT in the recovery process is discussed.  相似文献   

7.
The PsbH protein, a small subunit of the photosystem II complex (PSII), was identified as a 6-kDa protein band in the PSII core and subcore (CP47-D1-D2-cyt b-559) from the wild-type strain of the cyanobacterium Synechocystis PCC 6803. The protein was missing in the D1-D2-cytochrome b-559 complex and also in all PSII complexes isolated from IC7, a mutant lacking the psbH gene. The following properties of PSII in the mutant contrasted with those in wild-type: (a) CP47 was released during nondenaturing electrophoresis of the PSII core isolated from IC7; (b) depletion of CO2 resulted in a reversible decrease of the QA- reoxidation rate in the IC7 cells; (c) light-induced decrease in PSII activity, measured as 2,5-dimethyl-benzoquinone-supported Hill reaction, was strongly dependent on the HCO3- concentration in the IC7 cells; and (d) illumination of the IC7 cells lead to an extensive oxidation, fragmentation and cross-linking of the D1 protein. We did not find any evidence for phosphorylation of the PsbH protein in the wild-type strain. The results showed that in the PSII complex of Synechocystis attachment of CP47 to the D1-D2 heterodimer appears weakened and binding of bicarbonate on the PSII acceptor side is destabilized in the absence of the PsbH protein.  相似文献   

8.
To study the function of the carboxyl-terminal domain of a photosystem II (PSII) reaction center polypeptide, D1, chloroplast mutants of the green alga Chlamydomonas reinhardtii have been generated in which Leu-343 and Ala-344 have been simultaneously or individually replaced by Phe and Ser, respectively. The mutants carrying these replacements individually, L343F and A344S, showed a wild-type phenotype. In contrast, the double mutant, L343FA344S, evolved O2 at only 20-30% of the wild-type rate and was unable to grow photosynthetically. In this mutant, PSII accumulated to 60% of the wild-type level, indicating that the O2-evolving activity per PSII was reduced to approximately half that of the wild-type. However, the amount of Mn atom detected in the thylakoids suggested that a normal amount of Mn cluster was assembled. An investigation of the kinetics of flash-induced fluorescence yield decay revealed that the electron transfer from Q(-)(A) to Q(B) was not affected. When a back electron transfer from Q(-)(A) to a donor component was measured in the presence of 3-(3,4-dichlorophenol)-1,1-dimethylurea, a significantly slower component of the Q(-)(A) oxidation was detected in addition to the normal component that corresponds to the back electron transfer from the Q(-)(A) to the S(2)-state of the Mn cluster. Thermoluminescence measurements revealed that L343FA344S cells contained two functionally distinct Mn clusters. One was equivalent to that of the wild-type, while the other was incapable of water oxidation and was able to advance the transition from the S(1)-state to the S(2)-state. These results suggested that a fraction of the Mn cluster had been impaired by the L343FA344S mutation, leading to decreased O2 evolution. We concluded that the structure of the C-terminus of D1 is critical for the formation of the Mn cluster that is capable of water oxidation, in particular, transition to higher S-states.  相似文献   

9.
Photosynthetic membranes of plants primarily contain non-phosphorous glycolipids. The exception is phosphatidylglycerol (PG), which is an acidic/anionic phospholipid. A second major anionic lipid in chloroplasts is the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). It is hypothesized that under severe phosphate limitation, SQDG substitutes for PG, ensuring a constant proportion of anionic lipids even under adverse conditions. A newly constructed SQDG and PG-deficient double mutant supports this hypothesis. This mutant, sqd2 pgp1-1, carries a T-DNA insertion in the structural gene for SQDG synthase (SQD2) and a point mutation in the structural gene for phosphatidylglycerolphosphate synthase (PGP1). In the sqd2 pgp1-1 double mutant, the fraction of total anionic lipids is reduced by approximately one-third, resulting in pale yellow cotyledons and leaves with reduced chlorophyll content. Photoautotrophic growth of the double mutant is severely compromised, and its photosynthetic capacity is impaired. In particular, photosynthetic electron transfer at the level of photosystem II (PSII) is affected. Besides these physiological changes, the mutant shows altered leaf structure, a reduced number of mesophyll cells, and ultrastructural changes of the chloroplasts. All observations on the sqd2 pgp1-1 mutant lead to the conclusion that the total content of anionic thylakoid lipids is limiting for chloroplast structure and function, and is critical for overall photoautotrophic growth and plant development.  相似文献   

10.
α-Tocopherol is a lipophilic antioxidant that is an efficient scavenger of singlet oxygen. We investigated the role of α-tocopherol in the protection of photosystem II (PSII) from photoinhibition using a mutant of the cyanobacterium Synechocystis sp. PCC 6803 that is deficient in the biosynthesis of α-tocopherol. The activity of PSII in mutant cells was more sensitive to inactivation by strong light than that in wild-type cells, indicating that lack of α-tocopherol enhances the extent of photoinhibition. However, the rate of photodamage to PSII, as measured in the presence of chloramphenicol, which blocks the repair of PSII, did not differ between the two lines of cells. By contrast, the repair of PSII from photodamage was suppressed in mutant cells. Addition of α-tocopherol to cultures of mutant cells returned the extent of photoinhibition to that in wild-type cells, without any effect on photodamage. The synthesis de novo of various proteins, including the D1 protein that plays a central role in the repair of PSII, was suppressed in mutant cells under strong light. These observations suggest that α-tocopherol promotes the repair of photodamaged PSII by protecting the synthesis de novo of the proteins that are required for recovery from inhibition by singlet oxygen.  相似文献   

11.
The psbC gene encodes CP43, a component of Photosystem II (PSII) in higher plants, algae, and cyanobacteria. Previous work demonstrated that alteration of an arginine residue occurring at position 305 to serine produced a strain (R305S) with altered PSII activity (Knoepfle, N., Bricker, T. M., and Putnam-Evans, C. (1999) Biochemistry 38, 1582-1588). This strain grew at wild-type rates in complete BG-11 media (480 microM chloride) and evolved oxygen at rates that were 60-70% of the observed wild-type rates. The R305S strain assembled approximately 70-80% of the functional PSII centers contained in the control strain, and these PSII centers were very sensitive to photoinactivation at high light intensities. We recently observed that the R305S mutant exhibited a pronounced chloride effect. When this mutant was grown in media depleted of chloride (30 microM chloride), it exhibited a severely reduced photoautotrophic growth rate. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 microM bromide to the chloride-depleted BG-11 media. Oxygen evolution rates for the mutant were further depressed to about 22% of that observed in control cells under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. The mutant exhibited a significantly lower relative quantum yield for oxygen evolution than did the control strain, and this was exacerbated under chloride-limiting conditions. Fluorescence yield measurements indicated that both the mutant and the control strains assembled fewer PSII reaction centers under chloride-limiting conditions. The reaction centers assembled by the mutant exhibited an enhanced sensitivity to photoinactivation under chloride-limiting conditions, with a t(1/2) of photoinactivation of 2.6 min under chloride-limiting conditions as compared to a t(1/2) of 4.7 min under normal growth conditions. The mutant also exhibited an enhanced stability of its S(2) state and increased number of centers in the S(1) state following dark incubation. These results indicate that the mutant R305S exhibits a defect in its ability to utilize chloride in support of efficient oxygen evolution in PSII. This is the first mutant of this type described in the CP43 protein.  相似文献   

12.
We show for the first time that Cah3, a carbonic anhydrase associated with the photosystem II (PSII) donor side in Chlamydomonas reinhardtii, regulates the water oxidation reaction. The mutant cia3, lacking Cah3 activity, has an impaired water splitting capacity, as shown for intact cells, thylakoids and PSII particles. To compensate this impairment, the mutant overproduces PSII reaction centres (1.6 times more than wild type). We present compelling evidence that the mutant has an average of two manganese atoms per PSII reaction centre. When bicarbonate is added to mutant thylakoids or PSII particles, the O2 evolution rates exceed those of the wild type by up to 50%. The donor side of PSII in the mutant also exhibits a much higher sensitivity to overexcitation than that of the wild type. We therefore conclude that Cah3 activity is necessary to stabilize the manganese cluster and maintain the water-oxidizing complex in a functionally active state. The possibility that two manganese atoms are enough for water oxidation if bicarbonate ions are available is discussed.  相似文献   

13.
Our previous studies with the pgsA mutant of the cyanobacterium Synechocystis sp. PCC6803 (hereafter termed pgsA mutant), which is defective for the biosynthesis of phosphatidylglycerol (PG), revealed an important role for PG in the electron acceptor side of photosystem II (PSII), especially in the electron transport between plastoquinones Q(A) and Q(B). This study now shows that PG also plays an important role in the electron donor side of PSII, namely, the oxygen-evolving system. Analyses of purified PSII complexes indicated that PSII from PG-depleted pgsA mutant cells sustained only approximately 50% of the oxygen-evolving activity compared to wild-type cells. Dissociation of the extrinsic proteins PsbO, PsbV, and PsbU, which are required for stabilization of the manganese (Mn) cluster, followed by the release of a Mn atom, was observed in PSII of the PG-depleted mutant cells. The released PsbO rebound to PSII when PG was added back to the PG-depleted mutant cells, even when de novo protein synthesis was inhibited. Changes in photosynthetic activity of the PG-depleted pgsA mutant cells induced by heat treatment or dark incubation resembled those of DeltapsbO, DeltapsbV, and DeltapsbU mutant cells. These results suggest that PG plays an important role in binding extrinsic proteins required for sustaining a functional Mn cluster on the donor side of PSII.  相似文献   

14.
Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H(2) production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H(2) production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.  相似文献   

15.
We have characterized the biochemical nature and the function of PsbZ, the protein product of a ubiquitous open reading frame, which is known as ycf9 in Chlamydomonas and ORF 62 in tobacco, that is present in chloroplast and cyanobacterial genomes. After raising specific antibodies to PsbZ from Chlamydomonas and tobacco, we demonstrated that it is a bona fide photosystem II (PSII) subunit. PsbZ copurifies with PSII cores in Chlamydomonas as well as in tobacco. Accordingly, PSII mutants from Chlamydomonas and tobacco are deficient in PsbZ. Using psbZ-targeted gene inactivation in tobacco and Chlamydomonas, we show that this protein controls the interaction of PSII cores with the light-harvesting antenna; in particular, PSII-LHCII supercomplexes no longer could be isolated from PsbZ-deficient tobacco plants. The content of the minor chlorophyll binding protein CP26, and to a lesser extent that of CP29, also was altered substantially under most growth conditions in the tobacco mutant and in Chlamydomonas mutant cells grown under photoautotrophic conditions. These PsbZ-dependent changes in the supramolecular organization of the PSII cores with their peripheral antennas cause two distinct phenotypes in tobacco and are accompanied by considerable modifications in (1) the pattern of protein phosphorylation within PSII units, (2) the deepoxidation of xanthophylls, and (3) the kinetics and amplitude of nonphotochemical quenching. The role of PsbZ in excitation energy dissipation within PSII is discussed in light of its proximity to CP43, in agreement with the most recent structural data on PSII.  相似文献   

16.
Photoinactivation of photosystem II (PSII) and light-dependent degradation of the reaction center II (RCII) protein D1 have been investigated in Chlamydomonas reinhardtii mutants D6, AC208, and B4 deficient in cytochrome b6/f, plastocyanin, and photosystem I (PSI) activity, respectively. These mutants possess active PSII and reduce plastoquinone (PQ) but cannot oxidize plastoquinol (PQH2) via light-dependent reduction of NADP. In light-exposed cells a high ratio PQH2/PQ and a low turnover of PQ/PQH2 at the RCII-QB site are maintained. In all mutants photoinactivation of RCII was slower as compared to the wild-type (wt) cells, and D1 degradation was drastically decreased. The degradation of D1 was also lower in the wt cells under anaerobic conditions and presence of ascorbate, while raising the concentration of dissolved oxygen increased the degradation of the D1 protein in the AC208 mutant. Photoinactivation and light-dependent degradation of the D1 protein were drastically increased in the Scenedesmus obliquus LF-1 mutant cells altered in its PSII manganese binding and thus unable to reduce PQ using water as an electron donor. Diuron inhibited the light-dependent degradation of D1 protein in both the LF-1 mutant and wt cells. Based on these results we propose that availability of PQ at the QB site is required for (i) the photoinactivation process of the RCII acceptor side followed by inactivation of the donor side leading to the generation of harmful cation radicals (Z+, P680+, chlz+) which damage the D1 protein, and (ii) the accessibility of the cleavage site of the damaged D1 protein to proteolytic degradation.  相似文献   

17.
Besides acting as molecular chaperones, the amphitropic small heat shock proteins (sHsps) are suggested to play an additional role in membrane quality control. We investigated sHsp membrane function in the model cyanobacterium Synechocystis sp. PPC 6803 using mutants of the single sHsp from this organism, Hsp17. We examined mutants in the N-terminal arm, L9P and Q16R, for altered interaction with thylakoid and lipid membranes and examined the effects of these mutations on thylakoid functions. These mutants are unusual in that they retain their oligomeric state and chaperone activity in vitro but fail to confer thermotolerance in vivo. We found that both mutant proteins had dramatically altered membrane/lipid interaction properties. Whereas L9P showed strongly reduced binding to thylakoid and model membranes, Q16R was almost exclusively membrane-associated, properties that may be the cause of reduced heat tolerance of cells carrying these mutations. Among the lipid classes tested, Q16R displayed the highest interaction with negatively charged SQDG. In Q16R cells a specific alteration of the thylakoid-embedded Photosystem II (PSII) complex was observed. Namely, the binding of plastoquinone and quinone analogue acceptors to the Q(B) site was modified. In addition, the presence of Q16R dramatically reduced UV-B damage of PSII activity because of enhanced PSII repair. We suggest these effects occur at least partly because of increased interaction of Q16R with SQDG in the PSII complex. Our findings further support the model that membrane association is a functional property of sHsps and suggest sHsps as a possible biotechnological tool to enhance UV protection of photosynthetic organisms.  相似文献   

18.
Chlamydomonas reinhardii cells were treated with 5-fluorodeoxyuridine and ethylmethanesulfonate to induce mutagenesis. The mutant cells were analyzed for resistance against metribuzin (4-amino-6-(t-butyl)-3-methylthio-1,2,4-triazine-5-one). Clones with normal growth were isolated and the mutant cells further characterized. The photosynthetic rates of the mutant cells were about 20% lower than those of wild-type cells. The mutant cells were not only resistant against metribuzin (pI50 lowered from 6.65 to 3.41) but also against bromacil, atrazine, phenisopham and tolerant against 3-(3,4-dichlorophenyl)-1,1-dimethylurea. However, the mutant was more susceptible to phenolic electron-transport inhibitors like bromonitrothymol, ioxynil and i-dinoseb. 2,4-Dinitrophenyl-2′-iodo-3′-methyl-4′-nitro-6′-isopropyl phenyl ether inhibited the wild-type thylakoids more than the mutant. The analysis of the electron transport with artificial electron donors and acceptors showed that only Photosystem II was affected by the mutation and not Photosystem I. Binding experiments with isolated thylakoids of resistant and susceptible cells using [14C]metribuzin and [3H]-i-dinoseb revealed that metribuzin did not bind specifically to the thylakoids of the mutant cells, but that i-dinoseb did bind to the thylakoids of the mutant, and even better than to the thylakoids of the wild-type cells. Fluorescence studies confirmed these results.  相似文献   

19.
Carotene isomerase mutant (crtH mutant) cells of Synechocystis sp. PCC 6803 can accumulate beta-carotene under light conditions. However, the mutant cells grown under a light-activated heterotrophic growth condition contained detectable levels of neither beta-carotene nor D1 protein of the photosystem (PS) II reaction center, and no oxygen-evolving activity of PSII was detected. beta-Carotene and D1 protein appeared and a high level of PSII activity was detected after the cells were transferred to a continuous light condition. The PSI activities of thylakoid membranes from mutant cells were almost the same as those of thylakoid membranes from wild-type cells, both before and after transfer to the continuous light condition. These results suggest that beta-carotene is required for the assembly of PSII but not for that of PSI.  相似文献   

20.
Sulfur(S)-starvation was previously shown to induce the degradation of an acidic lipid in chloroplasts, sulfoquinovosyl diacylglycerol (SQDG), to yield a major internal S-source in a green alga, Chlamydomonas reinhardtii. We here found that the synthesis of phosphatidylglycerol (PG), the other acidic lipid in chloroplasts, is activated to elevate its content up to a level that just compensates for the loss of SQDG. Similar activation of PG synthesis was also observed in an SQDG-deficient mutant under S-replete conditions, which led us to propose that upregulation of PG synthesis under S-starved conditions occurs through direct sensing of SQDG-loss, but not of S-starvation. Moreover, thylakoid membranes isolated from S-starved cells were reduced in photosystem I activity on treatment with phospholipase A2 that specifically broke down PG, which suggested a critical role of PG that is increased under S-starved conditions in the maintenance of the photosystem I activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号