首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetaminophen and several of its metabolites are separated isocratically on a reversed-phase (C1) column using a mobile phase of 7% methanol and 0.75% glacial acetic acid in 0.1 M KH2PO4. Metabolites that can be separated include the sulfate, glucuronide, cysteine, and mercapturic acid conjugates of acetaminophen, as well as 3-hydroxyacetaminophen, 3-methoxyacetaminophen, and 3-methylthioacetaminophen. Although all of the metabolites can be detected by UV spectrophotometry, the sensitivity limits of detection are improved significantly for acetaminophen and all of the metabolites except the sulfate and glucuronide, by amperometric detection (electrochemical) of the same sample as it elutes from the UV detector. Minimal detectable limits (signal-to-noise ratio 2) for acetaminophen and its metabolites, other than the glucuronide and sulfate conjugates, were in the order of 1–2 ng injected on column using UV detection at 248 nm, and 0.1–0.5 ng using electrochemical detection at + 0.60 V with reference to an Ag/AgCl standard electrode.  相似文献   

2.
1. The major metabolites of 3,5-di-tert.-butyl-4-hydroxytoluene (BHT) in the rat are 3,5-di-tert.-butyl-4-hydroxybenzoic acid (BHT-acid), both free (9% of the dose) and as a glucuronide (15%), and S-(3,5-di-tert.-butyl-4-hydroxybenzyl)-N-acetylcysteine. 2. The mercapturic acid does not appear to derive from the usually accepted enzyme mechanism, and may involve a non-enzymic reaction between BHT free radical and cysteine. 3. The ester glucuronide and mercapturic acid found in rat urine are also the major metabolites in rat bile and must be responsible for the enterohepatic circulation. 4. Free BHT-acid is the main component in rat faeces. 5. In man, BHT-acid, free and conjugated, is a minor component in urine, and the mercapturic acid is virtually absent. The bulk of the radioactivity is excreted as the ether-insoluble glucuronide of a metabolite in which the ring methyl group and one tert.-butyl methyl group are oxidized to carboxyl groups, and a methyl group on the other tert.-butyl group is also oxidized, probably to an aldehyde group. 6. These differences in metabolism by the rat and by man are sufficient to account for the difference in excretion by the two species.  相似文献   

3.
The glucuronide and sulfate conjugates of benzene metabolites as well as muconic acid and pre-phenyl- and phenylmercapturic acids were separated by ion-pairing HPLC. The HPLC method developed was suitable for automated analysis of a large number of tissue or excreta samples. p-Nitrophenyl [14C]glucuronide was used as an internal standard for quantitation of these water-soluble metabolites. Quantitation was verified by spiking liver tissue with various amounts of phenylsulfate or glucuronides of phenol, catechol, or hydroquinone and analyzing by HPLC. Values determined by HPLC analysis were within 10% of the actual amount with which the liver was spiked. The amount of metabolite present in urine following exposure to [3H]benzene was determined using p-nitrophenyl [14C]glucuronide as an internal standard. Phenylsulfate was the major water-soluble metabolite in the urine of F344 rats exposed to 50 ppm [3H]benzene for 6 h. Muconic acid and an unknown metabolite which decomposed in acidic media to phenylmercapturic acid were also present. Liver, however, contained a different metabolic profile. Phenylsulfate, muconic acid, and pre-phenylmercapturic acids as well as an unknown with a HPLC retention time of 7 min were the major metabolites in the liver. This indicates that urinary metabolite profiles may not be a true reflection of what is seen in individual tissues.  相似文献   

4.
The use of capillary electrophoresis (CE) for the determination of paracetamol and its main metabolites in urine and serum is described. Due to its high efficacy, CE enables the analysis of drugs directly in complex matrices. Thus, simple, rapid and reliable assays could be developed that made use of some of the main advantages of this analytical technique. In order to prevent the peaks from tailing, a water zone was injected behind the sample. Occasionally occurring peak splittings of paracetamol were investigated and methods to suppress these splittings were developed. Paracetamol, its main metabolites, paracetamol glucuronide, paracetamol sulfate as well as paracetamol cysteinate and paracetamol mercapturate, as metabolites of the oxidative pathway were identified in urine using diode-array detection and coupling of the CE instruments to electrospray–mass spectrometry. The assays were validated. Their usefulness was demonstrated by applying them to the analysis of urine and serum samples of healthy volunteers as well as to urine samples from children under anticancer therapy.  相似文献   

5.
The metabolism of benzyl isothiocyanate and its cysteine conjugate.   总被引:8,自引:0,他引:8       下载免费PDF全文
1. The corresponding cysteine conjugate was formed when the GSH (reduced glutathione) or cysteinylglycine conjugates of benzyl isothiocyanate were incubated with rat liver or kidney homogenates. When the cysteine conjugate of benzyl isothiocyanate was similarly incubated in the presence of acetyl-CoA, the corresponding N-acetylcysteine conjugate (mercapturic acid) was formed. 2. The non-enzymic reaction of GSH with benzyl isothiocyanate was rapid and was catalysed by rat liver cytosol. 3. The mercapturic acid was excreted in the urine of rats dosed with benzyl isothiocyanate or its GSH, cysteinyl-glycine or cysteine conjugate, and was isolated as the dicyclohexylamine salt. 4. An oral dose of the cysteine conjugate of [14C]benzyl isothiocyanate was rapidly absorbed and excreted by rats and dogs. After 3 days, rats had excreted a mean of 92.4 and 5.6% of the dose in the urine and faeces respectively, and dogs had excreted a mean of 86.3 and 13.2% respectively. 5. After an oral dose of the cystein conjugate of [C]benzyl isothiocyanate, the major 14C-labelled metabolite in rat urine was the corresponding mercapturic acid (62% of the dose), whereas in dog urine it was hippuric acid (40% of the dose). 5. Mercapturic acid biosynthesis may be an important route of metabolism of certain isothiocyanates in some mammalian species.  相似文献   

6.
A study of the equine phase II metabolism of the anabolic agent boldenone is reported. Boldenone sulfate, boldenone glucuronide and their C17-epimers were synthesised as reference standards in our lab and a method was developed for their detection in a horse urine matrix. Solid phase extraction was used to purify the analytes, which were then detected by ion trap LC/MS. Negative and positive ionisation mode MS(2) were used for the detection of sulfate and glucuronide conjugates, respectively. Boldenone sulfate and 17-epiboldenone glucuronide were detected as the major and minor phase II metabolites, respectively, in horse urine samples collected following the administration of boldenone undecylenate by intramuscular injection.  相似文献   

7.
Because of the low hepatic activity of gamma-glutamyl-transferase in the rat, the liver is generally considered to play only a minor role in the degradation of glutathione conjugates, a limiting step in mercapturic acid formation. Recent findings indicate, however, that the liver has a prominent role in glutathione catabolism, particularly in species other than rat. To examine the contributions of liver to mercapturic acid biosynthesis, mercapturate formation was compared in isolated perfused livers from rats and guinea pigs dosed with either 0.3 or 3.0 mumol of 1-chloro-2,4-dinitrobenzene (CDNB). Chemically synthesized glutathione conjugate, mercapturic acid, and intermediary metabolites of CDNB were used as standards in the high performance liquid chromatography analysis of bile and perfusate samples. Biliary excretion accounted for almost all of the recovered metabolites. A marked species difference was observed in the pattern of CDNB metabolism. Rat livers dosed with 0.3 mumol of CDNB excreted 55% of total biliary metabolites as the glutathione conjugate and 8.2% as the mercapturic acid, whereas guinea pig livers excreted only 4.8% as the glutathione conjugate and 47% as the mercapturate. Mercapturic formation was also dose-dependent, with a larger fraction formed at the 0.3- versus the 3.0-mumol dose (8.2 versus 3.7% in the rat; 47 versus 19% in the guinea pig). Hepatic conversion of the glutathione conjugate to the mercapturic acid was markedly inhibited in both species after retrograde intrabiliary infusion of acivicin, an inhibitor of gamma-glutamyltransferase activity. These findings provide direct evidence for intrahepatic biosynthesis of mercapturic acids. Thus, glutathione conjugates synthesized within hepatocytes are secreted into bile and broken down to cysteine conjugates; the latter are then presumably reabsorbed by the liver, N-acetylated to form the mercapturic acid and re-excreted into bile.  相似文献   

8.
A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3–4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2–20 μg/ml and linearity was observed from 0.1–200 μg/ml and 5–2000 μg/ml for SA in plasma and urine, respectively. The method was validated to 0.2 μg/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.  相似文献   

9.
We evaluated the levels of (-)-epicatechin (EC) and its metabolites in plasma and urine after intake of chocolate or cocoa by male volunteers. EC metabolites were analyzed by HPLC and LC/MS after glucuronidase and/or sulfatase treatment. The maximum levels of total EC metabolites in plasma were reached 2 hours after either chocolate or cocoa intake. Sulfate, glucuronide, and sulfoglucuronide (mixture of sulfate and glucuronide) conjugates of nonmethylated EC were the main metabolites present in plasma rather than methylated forms. Urinary excretion of total EC metabolites within 24 hours after chocolate or cocoa intake was 29.8 ± 5.3% and 25.3 ± 8.1% of total EC intake. EC in chocolate and cocoa was partly absorbed and was found to be present as a component of various conjugates in plasma, and these were rapidly excreted in urine.  相似文献   

10.
We evaluated the levels of (-)-epicatechin (EC) and its metabolites in plasma and urine after intake of chocolate or cocoa by male volunteers. EC metabolites were analyzed by HPLC and LC/MS after glucuronidase and/or sulfatase treatment. The maximum levels of total EC metabolites in plasma were reached 2 hours after either chocolate or cocoa intake. Sulfate, glucuronide, and sulfoglucuronide (mixture of sulfate and glucuronide) conjugates of nonmethylated EC were the main metabolites present in plasma rather than methylated forms. Urinary excretion of total EC metabolites within 24 hours after chocolate or cocoa intake was 29.8 ± 5.3% and 25.3 ± 8.1% of total EC intake. EC in chocolate and cocoa was partly absorbed and was found to be present as a component of various conjugates in plasma, and these were rapidly excreted in urine.  相似文献   

11.
The following metabolites of sulfadiazine (S) were isolated from monkey urine by preparative HPLC: 5-hydroxysulfadiazine (5OH), 4-hydroxysulfadiazine (4OH) and the glucuronide (5OHgluc) and sulfate conjugate of 5OH (5OHsulf). The compounds were identified by NMR, mass and infrared spectrometry and hydrolysis by β-glucuronidase. The analysis of S, the hydroxymetabolites (4OH, 5OH) and conjugates N4-acetylsulfadiazine (N4), 5OHgluc and 5OHsulf in human and monkey plasma and urine samples was performed using reversed-phase gradient HPLC with UV detection. In plasma, S and N4 could be detected in high concentrations, whereas the other metabolites were present in only minute concentrations. In urine, S, the metabolites and conjugates were present. The limit of quantification of the compounds in plasma varies between 0.2 and 0.6 μg/ml (S 0.31, N4 0.40, 4OH 0.20, 5OH 0.37, 5OHgluc 0.33 and 5OHsulf 0.57 μg/ml). In urine it varies between 0.6 and 1.1 μg/ml (S 0.75, N4 0.80, 4OH 0.60, 5OH 0.80, 5OHgluc 0.80 and 5OHsulf 1.1 μg/ml). The method was applied to studies with healthy human subjects and Rhesus monkeys. The metabolites 5OH, 5OHgluc and 5OHsulf were present in Rhesus monkey and not in man. Preliminary results of studies of metabolism and pharmacokinetics in Rhesus monkey and man are presented.  相似文献   

12.
Ibuprofen has previously, after ingestion by man, been demonstrated to yield four major phase I metabolites, which are excreted in the urine partly as glucuronic acid conjugates. However, in previous investigations the quantitative determinations of the conjugates were performed by indirect methods. The purpose of the present investigation was to develop a high-performance liquid chromatographic (HPLC) system for the simultaneous determination of the major phase I and II metabolites of ibuprofen in biological fluids. The separation was performed using bare silica dynamically modified with N-cetyl-N,N,N-trimethylammonium hydroxide ions contained in the mobile phase. The separation of the metabolites of ibuprofen is greatly improved with this system compared to other published reversed-phase HPLC systems intended for the same purpose. The method developed makes it possible to simultaneously determine the intact glucuronic acid conjugates of ibuprofen as well as its phase I metabolites in human urine. In a study involving four healthy volunteers, a total recovery in urine of the dose given was found to be 58–86% within 8 h. This may be compared to an average of 67% earlier reported in the literature.  相似文献   

13.
An HPLC-MS/MS method has been developed for the selective quantitative analysis of paracetamol and its two major metabolites. The use of tandem MS enabled the detection and quantitation of metabolites in small sample sizes with high sensitivity and selectivity. Isocratic elution using acetonitrile and water containing formic acid combined with electrospray-tandem MS enabled the separation and accurate quantitation of each analyte and the internal standard 3-acetamidophenol. The on-column limits of detection for paracetamol, paracetamol sulfate, and paracetamol glucuronide were 2.4, 1.2, and 1.2 pmol, respectively. The method was applied to quantitate paracetamol and its metabolites in mouse urine. It is highly specific, sensitive, and easily adaptable to measure these analytes in biological fluids of other animals.  相似文献   

14.
The use of steroid hormones as growth promoters remains illegal in Europe. A classical approach used to control their utilization consists to measure the parent drug in target biological matrices. However, this strategy may fail when the parent drug is submitted to extensive metabolism reactions. For urine and tissue samples, chemical or enzymatic hydrolysis is usually applied in order to deconjugate glucuronide and sulfate phase II metabolites. But this treatment lead to the loss of information such as nature and relative proportions of the different conjugated forms, which can be useful, for example, to discriminate an endogenous production from an exogenous administration for natural hormones, or for other clinical or biochemical specific applications. For these purposes, direct measurement of conjugated metabolites using liquid chromatography-tandem mass spectrometry may represent a solution of choice. In this context, the mass spectrometric behavior of 14 steroid and corticosteroid phase II metabolites after electrospray ionization was investigated. Their fragmentation pathways in tandem mass spectrometry revealed some specificities within the different group of conjugates. A specific acquisition program (MRM mode) was developed for the unambiguous identification of the studied reference compounds. A more generic method (Parent Scan mode) was also developed for fishing approaches consisting to monitor several fragment ions typical of each conjugate class. A reverse phase HPLC procedure was also proposed for efficient retention and separation of the studied compounds. Finally, a protocol based on quaternary amine SPE was developed, permitting the separation of free, glucuronide, and sulfate fractions. Preliminary results on biological samples demonstrated the suitability of this analytical strategy for direct measurement of dexamethasone glucuronide and sulfate residues in bovine urine.  相似文献   

15.
Naphthalene is an environmental toxicant to which humans are exposed. Naphthalene causes dose-dependent cytotoxicity to murine airway epithelial cells but a link between exposure and human pulmonary disease has not been established. Naphthalene toxicity in rodents depends on P450 metabolism. Subsequent biotransformation results in urinary elimination of several conjugated metabolites. Glucuronide and sulfate conjugates of naphthols have been used as markers of naphthalene exposure but, as the current studies demonstrate, these assays provide a limited view of the range of metabolites generated from the parent hydrocarbon. Here, we present a liquid chromatography tandem mass spectrometry method for measurement of the glucuronide and sulfate conjugates of 1-naphthol as well as the mercapturic acids and N-acetyl glutathione conjugates from naphthalene epoxide. Standard curves were linear over 2 log orders. On column detection limits varied from 0.91 to 3.4 ng; limits of quantitation from 1.8 to 6.4 ng. The accuracy of measurement of spiked urine standards was -13.1 to + 5.2% of target and intra-day and inter-day variability averaged 7.2 (± 4.5) and 6.8 (± 5.0) %, respectively. Application of the method to urine collected from mice exposed to naphthalene at 15 ppm (4 hrs) showed that glutathione-derived metabolites accounted for 60-70% of the total measured metabolites and sulfate and glucuronide conjugates were eliminated in equal amounts. The method is robust and directly measures several major naphthalene metabolites including those derived from glutathione conjugation of naphthalene epoxide. The assays do not require enzymatic deconjugation, extraction or derivatization thus simplifying sample work up.  相似文献   

16.
Acrylamide (AA) is known to cause neurotoxicity, genotoxicity, reproductive, and carcinogenic effects in rodents and neurotoxicity in humans. A metabolomics study of urine samples from rats dosed with acrylamide for 14 days was undertaken to understand the mechanisms of and develop biomarkers for acrylamide-induced toxicity. NMR-based and LC/MS-based metabolomics methods were used to analyze metabolites in urine samples. Three mercapturic acid conjugates of acrylamide were detected using exact mass and principal component analysis (PCA) of urine samples. NMR analysis showed an increase in creatine and a decrease in taurine throughout the dosing period. Results showed that citric acid cycle metabolites were down-regulated later in the dosing period. Further, many amino acids were also up-regulated during the study and may be related to the weight loss observed in this study. Taken together, the data suggest that both LC/MS-based and NMR-based metabolomics analysis can detect changes in endogenous metabolites related to glutathione, TCA cycle, and amino acid metabolism induced by AA administration over a 2 week dosing period.  相似文献   

17.
C. Gómez  O.J. Pozo  L. Garrostas  J. Segura  R. Ventura 《Steroids》2013,78(12-13):1245-1253
Metandienone is one of the most frequently detected anabolic androgenic steroids in sports drug testing. Metandienone misuse is commonly detected by monitoring different metabolites excreted free or conjugated with glucuronic acid using gas chromatography mass spectrometry (GC–MS) and liquid chromatography tandem mass spectrometry (LC–MS/MS) after hydrolysis with β-glucuronidase and liquid–liquid extraction. It is known that several metabolites are the result of the formation of sulphate conjugates in C17, which are converted to their 17-epimers in urine. Therefore, sulphation is an important phase II metabolic pathway of metandienone that has not been comprehensively studied. The aim of this work was to evaluate the sulphate fraction of metandienone metabolism by LC–MS/MS. Seven sulphate metabolites were detected after the analysis of excretion study samples by applying different neutral loss scan, precursor ion scan and SRM methods. One of the metabolites (M1) was identified and characterised by GC–MS/MS and LC–MS/MS as 18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one sulphate. M1 could be detected up to 26 days after the administration of a single dose of metandienone (5 mg), thus improving the period in which the misuse can be reported with respect to the last long-term metandienone metabolite described (18-nor-17β-hydroxymethyl-17α-methylandrost-1,4,13-triene-3-one excreted in the glucuronide fraction).  相似文献   

18.
Propofol (P) is metabolized in humans by oxidation to 1,4-di-isopropylquinol (Q). P and Q are in turn conjugated with glucuronic acid to the respective glucuronides, propofol glucuronide (Pgluc), quinol-1-glucuronide (Q1G) and quinol-4-glucuronide (Q4G). Propofol and quinol with their glucuronide conjugates can be measured directly by gradient high-performance liquid chromatographic analysis without enzymic hydrolysis. The glucuronide conjugates were isolated by preparative HPLC from human urine samples. The glucuronides of P and Q were present in plasma and urine, P and Q were present in plasma, but not in urine. Quinol in plasma was present in the oxidised form, the quinone. Calibration curves of the respective glucuronides were constructed by enzymic deconjugation of isolated samples containing different concentrations of the glucuronides. The limit of quantitation of P and quinone in plasma are respectively 0.119 and 0.138 μg/ml. The limit of quantitation of the glucuronides in plasma are respectively: Pgluc 0.370 μg/ml, Q1G 1.02 μg/ml and Q4G 0.278 μg/ml. The corresponding values in urine are: Pgluc 0.264 μg/ml, Q1G 0.731 μg/ml and Q4G 0.199 μg/ml. A pharmacokinetic profile of P with its metabolites is shown, and some preliminary pharmacokinetic parameters of P and Q glucuronides are given.  相似文献   

19.
Urinary metabolites of cannabidiol (CBD), a non-psychoactive cannabinoid of potential therapeutic interest, were extracted from dog, rat and human urine, concentrated by chromatography on Sephadex LH-20 and examined by gas chromatography—mass spectrometry as trimethylsilyl (TMS), [2H9]TMS, methyl ester—TMS and methyloxime—TMS derivatives. Fragmentation of the metabolites under electron-impact gave structurally informative fragment ions; computer-generated single-ion plots of these diagnostic ions were used extensively to aid metabolite identification. Over fifty metabolites were identified with considerable species variation. CBD was excreted in substantial concentration in human urine, both in the free state and as its glucuronide. In dog, unusual glucoside conjugates of three metabolites (4″- and 5″-hydroxy- and 6-oxo-CBD), not excreted in the unconjugated state, were found as the major metabolites at early times after drug administration. Other metabolites in all three species were mainly acids. Side-chain hydroxylated derivatives of CBD-7-oic acid were particularly abundant in human urine but much less so in dog. In the latter species the major oxidized metabolites were the products of β-oxidation with further hydroxylation at C-6. A related, but undefined pathway resulted in loss of three carbon atoms from the side-chain of CBD in man with production of 2″-hydroxy-tris,nor-CBD-7-oic acid. Metabolism by the epoxide-diol pathway, resulting in dihydro-diol formation from the Δ-8 double bond, gave metabolites in both dog and human urine. It was concluded that CBD could be used as a probe of the mechanism of several types of biotransformation; particularly those related to carboxylic acid metabolism as intermediates of the type not usually seen with endogenous compounds were excreted in substantial concentration.  相似文献   

20.
The formation and excretion of conjugated catecholamines (CA) was studied in conscious rats after sympathetic stimulation by hypoxia (5.5-6% O2, 4 h). Hypoxia induced a rapid and intense increase of free epinephrine (E, X 12) and norepinephrine (NE, X 6) but only a limited enhancement of free dopamine (DA, X 2). Sulfate conjugates of E and NE had kinetics similar to the free forms, while glucuronides were only moderately and lately altered. In contrast to free and sulfated DA, DA glucuronide, the major plasma conjugate, was decreased (-25%). This result suggests that DA glucuronide, unlike other CA conjugates, is not related to detoxication but might supply a CA precursor. Urinary conjugates badly reflected plasma conjugates. In normoxic controls, CA conjugates prevailed in the plasma, whereas the free amines prevailed in the urine. Hypoxia increased mainly the excretion of E and NE glucuronide but not of the free amines. Urinary DA, free or conjugated, was decreased (-25%), a result in keeping with plasma DA glucuronide only. The poor relations between plasma and urine catecholamines pinpoint the importance of the kidney in CA handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号